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Abstract. In recent years, three main types of attacks have been de-
veloped against Feistel-based ciphers, such as DES[1]; these attacks are
linear cryptanalysis[2], differential cryptanalysis[3], and the Davies and
Murphy attack[4]. Using the discrete Fourier transform, we present here a
quantitative criterion of security against the Davies and Murphy attack.
Similar work has been done on linear and differential cryptanalysis[5,11].

1 Introduction

The Feistel scheme is a simple design which allows, when suitably iterated, the
construction of efficient block cipher, whose deciphering algorithm is implemen-
ted in a similar way. The most famous block cipher using a Feistel scheme is
DES, where the scheme is iterated 16 times, with 16 subkeys extracted from a
unique masterkey. The deciphering algorithm is just the same; the only difference
is that the subkeys are taken in reverse order.

The masterkey of DES is only 56 bits long; this is vulnerable to exhaustive
search. Indeed, specialized DES chips, able to calculate half a million DES ciphers
per second, have been considered since 1987[6] and their cost evaluated; it is
estimated that a five millions dollars machine using a few thousands of such
chips could break a DES with a single plaintext/ciphertext pair in two or three
hours[7]; other more recent estimates give lower prices, thanks to continuous
technological progress. More recently, following a challenge proposed by RSA
Inc., a 56 bits DES key was retrieved from a plaintext/ciphertext pair using
only the idle time of a few thousands generic purpose workstations around the
world[8].

Although exhaustive search is quite feasible, other attacks have been deve-
lopped. These may be applicable to other schemes than DES. The first one was
differential cryptanalysis[3]; it was based upon the existence of pairs of plain-
text, so that the corresponding ciphertexts differ in some predictable way related
to the difference of the plaintexts, with a small but not negligible probability.
DES appeared to be extremely well protected against this cryptanalysis, and, in-
deed, it is now established that the NSA, which created DES as an improvement
over the Lucifer scheme from IBM, knew about this attack and strengthened its
algorithm against it. The attack requires 247 chosen plaintexts and their corre-
sponding ciphertexts
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In 1993, following his earlier work, Matsui[2] discovered linear cryptanalysis,
which exploited some linear properties of DES; more specifically, Matsui was able
to build a linear equation of some of the bits of the plaintext, the ciphertext and
the key, which stand with a probability slightly different from 0.5. Matsui descri-
bed and implemented a method to use this equation in order to recover a DES
key from 243 plaintext/ciphertext pairs. The linear and differential cryptanalysis
have been unified in a common formalism by Chabaud and Vaudenay[5].

In 1993, Davies and Murphy[4] presented another attack, which uses the fact
that the output of the confusion function used in the Feistel scheme is not truly
random, and that this bias depends upon several key bits. Using a large quantity
of plaintext/ciphertext pairs, it is thus possible to guess these key bits with a
reasonnable probability of success. This attack has not proven very efficient in the
case of DES, but the same attack may work on other Feistel-based ciphers. The
resistance of a Feistel-based cipher against linear and differential cryptanalysis
has already been formally quantified[5]; we present here a similar quantification
for the Davies and Murphy attack.

2 Notations

We here present a description of the Feistel scheme that is used in DES. More
complete explanations may be found in [1].

We consider a message space M which consists of binary messages of a fixed
length; we assume that this length is an even number, so that the messages may
be divided in two parts of same length (the left one, with the most significant
bits, and the right one, with the least significant bits). We note N the space of
half-messages.

We also consider a confusion function f which takes two arugments, one from
N and the other, K, from a subkey space denoted K; f returns a value in N .

If we consider a message (L, R) where L and R are in N , the Feistel scheme
calculates the message (L′, R′), so that:

L′ = R

R′ = L ⊕ f(R, K)

where ⊕ is the bitwise “exclusive or” operation.
Such a scheme can be iterated several times, with different subkeys. Each

iteration will be called a round. If we have r rounds, we can note (Li, Ri) the
input of the i-th round (i is between 1 and r) and (Li+1, Ri+1) its output. The
subkey used for round i is named Ki. We then have the following equations:

Li+1 = Ri

Ri+1 = Li ⊕ f(Ri, Ki).
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When used in a cryptographic scheme, Lr+1 and Rr+1 are often exchanged.
Thus we have:

(L, R) = (L1, R1)
(L′, R′) = (Rr+1, Lr+1).

With this last operation, the deciphering operation is implemented exactly the
same way the enciphering is; only the subkeys Ki are taken in reverse order.

A four-rounds Feistel cipher is schematically represented in the figure 1.
In DES, there are 16 rounds (r = 16) and the elements of N are 32 bits long.

The subkeys are 48 bits long, extracted from a 56 bits masterkey with a fixed
and public algorithm. A known permutation is applied to the message before
entering the 16 consecutive Feistel rounds, and the reverse of this permutation
is applied afterwards. These permutations are fixed by the standard and can be
easily inverted, so we forget them here.

We may note an interesting property of such ciphers; this property was dis-
covered and used by Davies and Murphy in their attack[4]. For each round i, we
have:

f(Ri, Ki) = Li ⊕ Ri+1

and, if i is not r:
Ri+1 = Li+2.

Therefore, if i is not r, we have:

f(Ri, Ki) = Li ⊕ Li+2.

This remark is true for each round except the last one (where i+2 has no sense).
If we take the exclusive or of these equations for i even, we obtain the following:

R ⊕ L′ =
r/2⊕
j=1

f(R2j , L2j).

We can make the same operation with the odd rounds, and get the following
equation:

L ⊕ R′ =
r/2⊕
i=1

f(R2i−1, L2i−1).

Each plaintext/ciphertext pair thus gives access to the XORed value of the
outputs of the f functions of the even rounds, and also the XORed value of
the outputs of the f function of the odd rounds. That is why a non-uniform
distribution of the output of the f function may be revealed by observing a
large quantity of plaintext/ciphertext pairs.
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Figure 1: a four rounds Feistel cipher
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3 Davies and Murphy Attack

This attack was presented in [4] and improved by Biham and Biryukov[10].
We assume that there exists a pattern of n bits, in the output of f , so that

the 2n values this pattern may get are not equidistributed, for a given key K and
uniformly distributed random input R. We also assume that the distribution of
the 2n values may vary with some bits of the key, in a theorically predictable
way. Thus, we have a set of possible distributions, depending on the key, and
identifying the actual distribution in this set gives us some information on the
key.

In the standard DES, we can consider the output of two neighbouring S-
boxes in the i-th round. This is an 8-bit output; these 8 bits can be observed in
the output of the f function: in the DES, a fixed permutation is applied to the
output of the S-boxes, and this permutation is the same for the 16 rounds; so
the 8 bits form a fixed pattern in the output of f .

Two neighbouring S-boxes have an input size of 12 bits; 12 bits of Ki but
only 10 bits of Ri are combined to be used as this input. Two bits of Ri are
duplicated; the two instances of each of these bits are XORed with two different
key bits, and then go into the two S-boxes. This is shown in the figure 2.

S

S 4

5

R U

K

Figure 2: two neighbouring S-boxes in the DES

For each duplicated bit, the key bits condition whether the two instances of
this bit are equal or opposite when entering the two S-boxes. For random R, this
only implies a non-uniformity of the 12 bits input of the two S-boxes. There are
two duplicated bits, and therefore four possible sets of 12 bits inputs, depending
upon four key bits. Theses sets and the according output distribution of the two
S-boxes can be easily enumerated.

As noted in section 2, for each plaintext/ciphertext pair, we have access to
the XORed value of the outputs of the f functions of odd rounds, and thus access
to the XORed value of the corresponding 8-bits paterns. If each f function of
each round may have four output distributions, then the XORed value of 8 such
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outputs may take 165 possible distributions: the XOR is commutative, so that
the order of the rounds does not matter; what only matters is the number of
distributions of each of the four types described above. This leads to

(11
3

)
= 165

possibilities.
Strangely enough, in DES, we end up with only two possible distributions;

this is due to the specific definition of S-boxes (for a S-box, the output is a per-
mutation of the 16 values taken by the four middle bits, and the two extreme
bits determine which permutation to apply among four), which leads to some
simplifications in the enumeration of the distributions. The details of this cal-
culation may be found in [4]. The actual distribution depends upon the XORed
value of several key bits (that is, an indirect key bit, that help us reduce the
complexity of the exhaustive search of the key).

Therefore, identifying the actual distribution among the two possible reveals
one indirect key bit. As this can be done for odd rounds as well as for even
rounds, with the same plaintext/ciphertext pairs, the attack may give us two
key bits.

The most efficient statistical test known is the maximum likelihood method:
for each of the possible distributions, one calculates the probability of the event
actually measured; the distribution which gives the highest probability is then
supposed to be the right one. In the case of DES neighbouring S-boxes, we then
have two distributions, which may be represented as two vectors u and v in R256;
ui with i between 0 and 255 is the probability of obtaining the 8-bits value i.
Obviously, for each i, ui is a real number between 0 and 1, and we have:

255∑
i=0

ui = 1.

We can also define u′ (and similarly v′) where

ui =
1

256
+ u′

i.

Thus we have:
255∑
i=0

u′
i = 0.

As a consequence of the peculiar definition of S-boxes, we have:

u′ + v′ = 0.

More detailed explanations about this fact may be found in [4]; this is not a
general property of Feistel schemes, but an artefact of the structure of the S-
boxes.

Let us assume that we have access to M plaintext/ciphertext pairs; among
these M pairs, each 8-bits value i appeared mi times. If the theorical distribution
is u, the probability of such an event is:

p1 =
255∏
i=0

umi
i .
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p2 is also defined, in the v case. Comparing p1 and p2 is equivalent to comparing
their logarithms. We have:

log p1 =
255∑
i=0

mi log ui.

So we have:

log p1 =
255∑
i=0

mi log(
1

256
+ u′

i)

As the sum of all mi’s is M , we have the following:

log p1 =
255∑
i=0

mi log(1 + 256u′
i) − M log 256

As 256u′
i is relatively small, compared to 1 (for a perfect cipher, u′ should be 0;

DES is well-designed, and a simple experiment on a few millions random plain-
texts confirms that the deviation u′ we deal with is really small, and thus many
pairs plaintext/ciphertext are required), we can approximate the logarithms on
the right hand side, which gives:

log p1 + M log 256 ≈ 256
255∑
i=0

miu
′
i.

Similarly, we have:

log p2 + M log 256 ≈ 256
255∑
i=0

miv
′
i.

Thus we compare the scalar product of m with u′ and the scalar product of
m with v′. We can bound these products using euclidian norms over R256. If we
note N(x) the euclidian norm of x, our two scalar products are:

s1 = m · u′ ≤ N(m)N(u′)
s2 = m · v′ ≤ N(m)N(v′).

m is what we obtain by analyzing the plaintext/ciphertext pairs; it follows a
precise distribution, but may vary around this one. mi is a random variable
which counts the number of times the pattern value i was obtained among the M
pairs. The probability of obtaining i for each pair is close to 1/256, therefore the
mean value of mi is close to M/256, and its variance is near (M/256)(255/256),
which we approximate by M/256.

So the difference between m and its theorical value (namely M times its dis-
tribution vector) is a vector whose coordinates have an average absolute value
of (

√
M)/16; so the norm of this vector is close to

√
M (where N(m) is close to
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M/16). To conclude anything from the pairs plaintext/ciphertext, the expected
deviation (the difference between s1 and s2) must not be smaller than the stan-
dard deviation (which is the average deviation of a measure from its distribution
— when dealing with uni-dimensional random variables, the standard deviation
is the square root of the variance). Therefore, M must be sufficiently big so that:

N(m)(N(u′) + N(v′)) ≥
√

M.

This can be rewritten:
M ≥ 256

(N(u′) + N(v′))2
.

In the actual DES, this leads to an attack with at least 252 pairs, which may
reveal two key bits. This is achieved with the two S-boxes 7 and 8. With 255

pairs, the probability of success of the attack (that is, guessing correctly the two
indirect key bits) is above 50%. The other pairs of S-boxes are much worse, as
far as we deal with attacks.

4 The General Feistel Scheme Case

We now consider the general case of the Davies and Murphy attack; thus we
ignore all simplifications induced by the specific definition of DES. We have a
Feistel-based cipher, with r rounds (r is even), with a confusion function f , so
that n particular bits of the output of the f function form a pattern whose 2n

possible values are not equidistributed. We also assume that the distribution
of these values may vary, depending on some of the key bits of the considered
round. We suppose we have q possible distributions, represented by q vectors of
R2n

, denoted as u1, u2,... uq.
For each plaintext/ciphertext pair, we have acces to the XORed value of r/2

patterns of n bits. This value follows a distribution which depends upon some
key bits; we can theorically calculate these distributions, and we want to be able
to determine, using several plaintext/ciphertext pairs, which distribution among
the possible ones is the one actually in use; this would give us the corresponding
information about the key bits involved.

The XOR operation is commutative; in each round, the pattern may have
one distribution among q; what only matters in the distribution of the XORed
value of the r/2 patterns is the number of each distribution we have among the
r/2 rounds. The number of possible combinations is then:

(
r/2 + q − 1

q − 1

)
.

Some of these distributions may in fact be alike, just as is the case with DES,
where there are only two distributions.

We now introduce another representation for distributions of n-bits patterns,
that we considered for the moment as vectors in R2n

. Such a vector can be
viewed as a function from Zn

2 to R, which associates to an n-bit binary vector
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the coordinate associated with the integer number the binary vector represents.
Such a function may be decomposed using Fourier transform[9].

We consider the Fourier basis of function vy for each vector y in Zn
2 , so that

for each vector x, we have:
vy(x) = (−1)y·x

where y ·x denotes the scalar product of y and x (namely the number of bits set
to 1 in y&x, where & is the bitwise AND operation).

If a is a function from Zn
2 to R, we can compute its Fourier coefficients â(y)

(for each vector y) as follows:

â(y) =
∑

x

a(x)vy(x).

Using these coefficients, we can find the a function with the inverse Fourier
transform:

a(x) = 2−n
∑

y

â(y)vy(x) = 2−nˆ̂a(x)

for each vector x.
The XOR operation between the output of two rounds of the cipher is, in the

Fourier formalism, a convolution of the two distributions of outputs. Indeed, if a
is the function representing the distribution of the output of the first round, and
b is the output of the second round, then the distribution of the bitwise XOR of
these two rounds will be c, where, for each x:

c(x) =
∑

y⊕z=x

a(y)b(z).

But, the addition in Zn
2 is nothing else that the XOR operation, and, for each

x, we have x ⊕ x = 0. Therefore, the equation may be rewritten this way:

c(x) =
∑

y

a(x − y)b(y).

A convolution is simply calculated by multiplying term by term the Fourier
coefficients. This means that, using the preceding notations, we have, for each
x:

ĉ(x) = â(x)b̂(x).

We shall prove a similar property for the deviations to equiprobability: if we
consider a′, b′ and c′ such that a(x) = 2−n + a′(x) for all x, then, if c is the
convolution product of a and b, then c′ is the convolution product of a′ and b′.
Indeed, if we note d the constant function equal to 2−n, its Fourier coefficients
d̂(x) are 1 if x = 0, 0 otherwise. Therefore, we have the following:

â = â′ + d̂

b̂ = b̂′ + d̂

ĉ = ĉ′ + d̂

ĉ = âb̂
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So we have, by replacing a, b and c in the last equation by their expression in
a′, b′ and c′:

ĉ′ + d̂ = â′b̂′ + d̂2 + d̂(â′ + b̂′)

We have clearly d̂2 = d̂ (as d̂(x) = 0 or 1 for each x), and â′(0) = b̂′(0) = 0 (for
a function u, the first Fourier coefficient û(0) is the sum of all its values over Zn

2 ,
so it is 0 in the case of a′ and b′, as these are the deviation of a distribution to
the uniform distribution, which is the constant function equal to 2−n).

In order to set a minimal bound for the complexity of the Davies and Murphy
attack, we want to get a maximal bound for the size of the deviation of the
pattern of the output of the f function to the uniform distribution. If we consider
the m/M vector, this will follow the distribution a, which deviates from the
uniform distribution by a′. The m vector comes from an actual “measure” (the
plaintext/ciphertext pairs), so it will deviate from its distribution by an average
distance of

√
M (this is the same calculus as at the end of the section 3). We use

the maximum likelihood method, so we compare the scalar products of m with
the possibles deviations to equidistributions.

So we find that, if Y is a maximal bound for the euclidian norm of the
deviation (in R2n

), the scalar products we consider are the number M of plain-
text/ciphertext pairs needed for a succesful attack must be such that:

2
M

2n/2 Y ≥
√

M

(2Y is a maximum for the distance between two possible distributions) which
can be rewritten this way:

M ≥ 2n

4Y 2

We note that this result stands with the approximations used in the section 3,
in particular n is big enough to neglect 2−n with respect to 1.

All we need is the value of Y . If the function of the distribution of the XORed
value of the output of the r/2 rounds is a, then we may obtain Y from its Fourier
coefficients â. Indeed, the euclidian norm over R2n

corresponds to the L2 norm
in the function space, and the scalar product becomes the following:

a · b =
∑

x

a(x)b(x)

The Fourier transform simply computes the coordinates of a function a′ over the
orthogonal basis (vy). All vy have 2n/2 as L2 norm. We can therefore calculate
the L2 norm of a function a using the Fourier coefficients â:

N(a′) = 2−n/2N(â′)

Therefore we have:
N(a) ≤ 2n/2 max

x
|â(x)|

where N(a) is the L2 norm of a. Thus, we have the proposed value Y :

Y = max
x

|â(x)|
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We have seen that the Fourier coefficients of a are obtained by multiplying
those of the functions associated to each round. We then have the following
security criterion:

– Calculate the Fourier coefficients of the functions representing the possible
bias towards equiprobability of the distribution of the chosen pattern in the
output of the confusion function of one round. This is done in the DES by
expliciting the distribution of the pattern, by exhaustive enumeration of the
possible inputs of two neighbouring S-boxes.

– Take the largest of these coefficients in absolute value, noted µ.
– Raise it to the r power.
– This peculiar pattern is secure against Davies and Murphy attacks up to:

1
4µr

The global security of the scheme is therefore a question of enumeration of
possible biased patterns. The criterion uses some approximations, so the actual
security may in fact be higher. In the DES case, with the same pattern as the one
used by Davies and Murphy to find the attack in 252 (but Davies and Murphy
consider the attack as useful only if it gives two correct key bits with a probability
better than 0.5, and therefore calculate a complexity of 255 in this case) we find
a security of at least 252.

5 The Approximations Used

It must be noted that we made, in the calculation, several approximations. The
main one is that we want to bound the euclidian distance between possible
distributions, and we do it by bounding the deviation of these distributions
to equiprobability; this is just what is necessary in the DES case, as the two
possible deviations to equiprobability are just symmetric. That is why we obtain
the exact result in this case.

The other calculations are also subject to some approximations. We conside-
red that the 2n coordinates of the m vector are gaussian independant random
variables; they are not, in fact, independant, as their sum is M . If 2n is suffi-
ciently big, this will not be a problem. In the DES case, n = 8, so we neglect this
effect. The mi values follow binomial distributions, which can be approximated
by a gaussian distribution if M is big enough, using the central limit theorem.
Considering the precision needed, any M above 1000 will do it (and indeed M
is largely above 1000). We also assume that the final distribution is close to the
equiprobable one, which is desirable anyway in any symetric cipher scheme.

6 Conclusion and Open Problems

We described a method to calculate a minimal bound for the Davies and Mur-
phy attack against a Feistel scheme. In order to apply it efficiently to a given



Optimal Resistance Against the Davies and Murphy Attack 159

scheme, one must first identify the patterns of bits in the output of the con-
fusion function, whose possible values are not equidistributed. Once identified,
their output distribution must then be calculated precisely, which may not be
easy, depending on the scheme.
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