
IPAKE: Isomorphisms for Password-Based
Authenticated Key Exchange

Dario Catalano1, David Pointcheval1, and Thomas Pornin2

1 CNRS–LIENS, Ecole Normale Supérieure, Paris, France
{Dario.Catalano,David.Pointcheval}@ens.fr

2 Cryptolog, Paris, France
Thomas.Pornin@cryptolog.com

Abstract. In this paper we revisit one of the most popular password-
based key exchange protocols, namely the OKE (for Open Key Exchange)
scheme, proposed by Luck in 1997. Our results can be highlighted as fol-
lows. First we define a new primitive that we call trapdoor hard-to-invert
isomorphisms, and give some candidates. Then we present a generic
password-based key exchange construction, that admits a security proof
assuming that these objects exist. Finally, we instantiate our general
scheme with some concrete examples, such as the Diffie-Hellman func-
tion and the RSA function, but more interestingly the modular square
root function, which leads to the first scheme with security related to
the integer factorization problem. Furthermore, the latter variant is very
efficient for one party (the server). Our results hold in the random-oracle
model.

1 Introduction

Shortly after the introduction of the revolutionary concept of asymmetric cryp-
tography, proposed in the seminal paper by Diffie and Hellman [9], people real-
ized that properly managing keys is not a trivial task. In particular private keys
tend to be pretty large objects, that have to be safely stored in order to preserve
whatever kind of security. Specific devices have thus been developed in order
to help human beings in storing their secrets, but it is clear that even the most
technologically advanced device may become useless if lost or stolen. In principle
the best way to store a secret is to keep it in mind. In practice, however, human
beings are very bad at remembering large secrets (even if they are passwords or
pass-phrases) and very often they need to write passwords down on a piece of
paper in order to be able to keep track of them. As a consequence, either one
uses a short (and memorable) password, or writes/stores it somewhere. In the
latter case, security eventually relies on the mode of storage (which is often the
weakest part in the system: a human-controlled storage). In the former case, a
short password is subject to exhaustive search.

Indeed, by using a short password, one cannot prevent a brute force on-line
exhaustive search attack: the adversary just tries some passwords of its own
choice in order to try to impersonate a party. If it guesses the correct password,

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 477–493, 2004.
c© International Association for Cryptologic Research 2004

478 Dario Catalano, David Pointcheval, and Thomas Pornin

it can get in, otherwise it has to try with another password. In many applications,
however, the number of such active attacks can be limited in various ways. For
example one may impose some delay between different trials, or even closing the
account after some fixed number of consecutive failures. Of course the specific
limitations depend very much on the context – other kind of attacks, such as
Denial of Service ones, for example, should be made hard to mount either. In
any case, the important point we want to make here is that the impact of on-
line exhaustive search can be limited. However on-line attacks are not the only
possible threats to the security of a password-based system. Imagine for example
an adversary who has access to several transcripts of communication between a
server and a client. Clearly the transcript of a “real” communication somehow
depends on the actual password. This means that a valid transcript (or several
ones) could be used to “test” the validity of some password: the adversary chooses
a random password and simply checks if the produced transcript is the same as
the received one. In this way it is possible to mount an (off-line) exhaustive search
attack that can be much more effective than the on-line one, simply because, in
this scenario, the adversary can try all the possible passwords just until it finds
the correct one. Such an off-line exhaustive search is usually called “dictionary
attack”.

1.1 Related Work

A password-based key exchange is an interactive protocol between two parties
A and B, who initially share a short password pw , that allows A and B to
exchange a session key sk. One expects from this key to be semantically secure
w.r.t. any party, but A and B who should know it at the end of the protocol.
The study of password-based protocols resistant to dictionary attacks started
with the seminal work of Bellovin and Merritt [3], where they proposed the so-
called Encrypted Key Exchange protocol (EKE). The basic idea of their solution
is the following: A generates a public key and sends it to B encrypted – using a
symmetric encryption scheme – with the common password. B uses the password
to decrypt the received ciphertext. Then it proceeds by encrypting some value
k using the obtained public key. The resulting ciphertext is then re-encrypted
(once again using the password) and finally sent to A. Now A can easily recover
k, using both his own private key and the common password. A shared session
key is then derived from k using standard techniques.

A classical way to break password-based schemes is the partition attack [4].
The basic idea is that if the cleartexts encrypted with the password have any
redundancy, or lie in a strict subset, a dictionary attack can be successfully
mounted: considering one flow (obtained by eavesdropping) one first chooses a
password, decrypts the ciphertext and checks whether the redundancy is present
or not (or whether the plaintext lies in the correct range.) This technique allows
to quickly select probable passwords, and eventually extract the correct one.

The partition attack can be mounted on many implementations of EKE,
essentially because a public key usually contains important “redundancy” (as
a matter of fact a public key – or at least its encoding – is not in general

IPAKE: Isomorphisms for Password-Based Authenticated Key Exchange 479

a random-looking string). Note that in the described approach (for EKE), the
same symmetric encryption (using the same password) is used to encrypt both
the public key, and the ciphertext generated with this key. This may create ad-
ditional problems basically because these two objects (i.e. the public key and
the ciphertext) are very often defined on completely unrelated sets. A nice ex-
ception to this general rule are ElGamal keys [12]. This is thus the sole effective
application of EKE.

As noticed by the original authors [3], and emphasized by Lucks [17], it is
“counter-intuitive (. . .) to use a secret key to encrypt a public key”. For this
reason Lucks [17] proposed OKE, (which stands for Open Key Exchange). The
underlying idea of this solution is to send the public key in clear and to en-
crypt the second flow only. Adopting this new approach, additional public-key
encryption schemes can be considered (and in particular RSA [23] for instance).
However, one has to be careful when using RSA. The problem is that the RSA
function is guaranteed to be a permutation only if the user behaves honestly
and chooses his public key correctly. In real life, however, a malicious user may
decide to generate keys that do not lead to a permutation at all. In such a
case a partition attack becomes possible: an RSA-ciphertext would lie in a strict
subset if Z�

n. For this reason Lucks proposed a variant of his scheme, known
as Protected OKE, to properly deal with the case of RSA. Later on, however,
MacKenzie et al. [19, 18] proved that the scheme was flawed by presenting a way
to attack it. At the same time they showed how to repair the original solution
by proposing a new protocol they called SNAPI (for Secure Network Authen-
tication with Password Identification), for which they provided a full proof of
security in the random-oracle model. This proof, however, is specific to RSA, in
the random-oracle model, and very intricate.

Interestingly enough, in the standard model, the problem of secure password-
based protocols was not treated rigorously until very recently. The first rigorous
treatment of the problem was proposed by Halevi and Krawczyk [15] who, how-
ever, proposed a solution that requires other setup assumptions on top of that
of the human password. Later on, Goldreich and Lindell [14] proposed a very
elegant solution that achieves security without any additional setup assumption.
The Goldreich and Lindell proposal is based on sole existence of trapdoor per-
mutations and, even though very appealing from a theoretical point of view, is
definitely not practical. The first practical solution was proposed by Katz, Os-
trovsky and Yung [16]. Their solution is based on the Decisional Diffie-Hellman
assumption and assumes that all parties have access to a set of public parameters
(which is of course a stronger set-up assumption than assuming that only human
passwords are shared, but still a weaker one with respect to the Halevi-Krawczyk
ones for example). Even more recently Gennaro and Lindell [13] presented an
abstraction of the Katz, Ostrovsky and Yung [16] protocol that allowed them to
construct a general framework for authenticated password-based key exchange
in the common reference string model.

We note here that even though from a mathematical point of view a proof in
the standard model is always preferable to a proof in the random-oracle model,

480 Dario Catalano, David Pointcheval, and Thomas Pornin

all the constructions in the standard model presented so far are way less efficient
with respect to those known in the random-oracle model. It is true that a proof
in the random-oracle model should be interpreted with care, more as a heuristic
proof than a real one. On the other hand in many applications efficiency is a big
issue and it may be preferable to have a very efficient protocol with a heuristic
proof of security than a much less efficient one with a complete proof of security.

1.2 Our Contributions

In this paper, we revisit the generic OKE construction by clearly stating the
requirements about the primitive to be used: we need a family of isomorphisms
with some specific computational properties that we call trapdoor hard-to-invert
isomorphisms (see next section for a formal definition for these objects). Very
roughly a trapdoor hard-to-invert isomorphism, can be seen as an isomorphic
function that is in general hard to invert, unless some additional information
(the trapdoor) is provided. Note that such an object is different with respect to
traditional trapdoor functions. A trapdoor one-way function is always easy to
compute, whereas a trapdoor hard-to-invert function may be not only hard to
invert, but – at least in some cases – also hard to compute [10]. As it will become
apparent in the next sections, this requirement is not strong because basically
all the classical public-key encryption schemes fit it (RSA [23], Rabin with Blum
moduli [22], ElGamal [12], and even the recent Okamoto-Uchiyama’s [20] and
Paillier’s schemes [21]). More precisely our results can be described as follows.

First, after having described our security model, we present a very general
construction – denoted IPAKE for Isomorphism for Password-based Authenticated
Key Exchange – and we prove it is secure. Our security result relies on the com-
putational properties of the chosen trapdoor hard-to-invert isomorphism family,
in the random-oracle model. As a second result we pass instantiating the general
construction with specific encryption schemes. We indeed show that trapdoor
hard-to-invert isomorphisms can be based on the Diffie-Hellman problem, on
the RSA problem, and even on integer factoring.

For lack of space, we refer to the full version [8] for the two first applications,
since they are not really new. Plugging ElGamal directly leads to one of the
AuthA variants, proposed to IEEE P1363 [2], or to PAK [5]. The security has
already been studied in several ideal models [5–7]. The case of RSA leads to
a scheme similar to RSA-OKE, SNAPI [19, 18], or to the scheme proposed by
Zhu et al. [26].

More interestingly using such methods we can construct a very efficient solu-
tion from the Rabin function. To our knowledge this is the first efficient password-
based authenticated key exchange scheme based on factoring.

2 Preliminaries

Denote with N the set of natural numbers and with R+ the set of positive real
numbers. We say that a function ε : N→ R+ is negligible if and only if for every
polynomial P (n) there exists an n0 ∈ N such that for all n > n0, ε(n) ≤ 1/P (n).

IPAKE: Isomorphisms for Password-Based Authenticated Key Exchange 481

If A is a set, then a← A indicates the process of selecting a at random and
uniformly over A (which in particular assumes that A can be sampled efficiently).

2.1 Trapdoor Hard-to-Invert Isomorphisms
Let I be a set of indices. Informally a family of trapdoor hard-to-invert isomor-
phisms is a set F = {fm : Xm → Ym}m∈I satisfying the following conditions:

1. one can easily generate an index m, which provides a description of the func-
tion fm – a morphism –, its domain Xm and range Ym (which are assumed
to be isomorphic groups), and a trapdoor tm;

2. for a given m, one can efficiently sample pairs (x, fm(x)), with x uniformly
distributed in Xm;

3. for a given m, one can efficiently decide Ym;
4. given the trapdoor tm, one can efficiently invert fm(x), and thus recover x;
5. without the trapdoor, inverting fm is hard.

This is almost the same definition as for trapdoor one-way permutations with
homomorphic properties. There is a crucial difference however: one can sample
pairs, but may not necessarily be able to compute fm(x) for a given x (point 2
above). As a consequence, the function is hard-to-invert, but it may be hard to
compute as well.

More formally we say that F defined as above is a family of trapdoor hard-
to-invert isomorphisms if the following conditions hold:

1 – There exist a polynomial p and a probabilistic polynomial time Turing
Machine Gen which on input 1k (where k is a security parameter) outputs
pairs (m, tm) where m is uniformly distributed in I and |tm| < p(k). The
index m defines Xm and Ym, which are isomorphic groups, an isomorphism
fm from Xm onto Ym and a set Rm of values uniformly samplable, which
will be used to sample (x, fm(x)) pairs. The information tm is referred as
the trapdoor.

2.1 – There exists a polynomial time Turing Machine Samplex which on input
m ∈ I and r ∈ Rm outputs x ∈ Xm. Furthermore, for any m, the machine
Samplex(m, ·) implements a bijection from Rm onto Xm.

2.2 – There exists a polynomial time Turing Machine Sampley, such that on in-
put m ∈ I and r ∈ Rm it outputs fm(x) for x = Samplex(m, r). Therefore,
Sampley(m, r) = fm(Samplex(m, r)).

3 – There exists a polynomial time Turing Machine Checky which, on input
m ∈ I and any y, answers whether y ∈ Ym or not.

4 – There exists a (deterministic) polynomial time Turing Machine Inv such
that Inv(m, tm, fm(x)) = x, for all x ∈ Xm and for all m ∈ I.

5 – For every probabilistic polynomial time Turing Machine A we have that,
for large enough k,

Pr[m R← I ; x
R← Xm ; y = fm(x) : A(m, y) = x] ≤ ε(k),

where ε(·) is a negligible function.

The last property is our formal hard-to-invert notion, which is quite similar to
the usual one-way notion: they just differ if Samplex(m, ·) is one-way.

482 Dario Catalano, David Pointcheval, and Thomas Pornin

2.2 Verifiable Sub-family of Trapdoor Hard-to-Invert Isomorphisms

In the above definition, it is clear that for any m ∈ I, the function fm is an
isomorphism from the group Xm onto Ym. However, in practice, the family of
functions {fm}m maybe indexed by a potentially larger set S (i.e. I ⊆ S),
for which there may exist some indices that do not lead to an isomorphism.
Therefore, we require more properties to be satisfied.

– there exists a large subset I ⊆ S, such that F = {fm : Xm → Ym}m∈I is a
family of trapdoor hard-to-invert isomorphisms;

– there exists a set J , of indices which provide an isomorphism – such that
I ⊆ J ⊆ S –, which admits an efficient zero-knowledge proof of membership.

The last property turns out to be crucial for the application we have in mind. In
our setting the client has to choose the specific function to use in the protocol.
This means that a dishonest client (i.e. one that does not share a password
with the server) could propose an index whose corresponding function is not
an isomorphism. This would give him the ability to run a partition attack (as
already explained for RSA). For this reason we require the client to produce a
function f together with a proof that it is actually an isomorphism.

2.3 Zero-Knowledge Proofs of Membership

As noticed above, the only property we want to be able to verify is the isomor-
phic one, and thus the fact that the index m actually lies in J : we just want
the adversary not to be able to prove a wrong statement, we do not care about
malleability [11]. One second point is that the zero-knowledge property will be
required in the security proof: a valid index m is given, one tries to use the adver-
sary to solve a hard problem related to m. Thus, we need to be able to provide a
proof of validity of m, without any witness. Note however that the simulation is
performed for valid statements only, and thus simulation soundness [24] is not
required. Moreover, since we just have to simulate one proof without the wit-
ness (other executions will be performed as in an actual execution) concurrent
zero-knowledge is not needed either.

For efficiency reasons, we will focus on a specific class of zero-knowledge
proofs: for a given statement m, the verifier sends a random seed seed and then
the prover non-interactively provides a proof p = Provem(m, w, seed) using a
witness w that m ∈ J , w.r.t. the random seed seed; the proof can be checked
without the witness Checkm(m, seed, p). In our protocol, honest players will sam-
ple m ∈ I, and thus together the trapdoor tm. This trapdoor will generally be a
good witness. More formally we require:

– Completeness – Provem and Checkm are two efficient (polynomial time) al-
gorithms, and for any m ∈ J and any challenge seed, a witness helps to build
a proof p = Provem(m, w, seed) which is always accepted: Checkm(m, seed, p)
accepts;

IPAKE: Isomorphisms for Password-Based Authenticated Key Exchange 483

– Soundness – for any m �∈ J , the probability for any adversary (on its random
tape and the random seed seed) to forge a valid proof (accepted by the
Checkm algorithm) is negligible within time t: Succforge(t) will denote the
maximal success probability for any adversary within time t;

– ROM-simulatability – granted the programmability of the random oracle, for
any m ∈ I and any seed, there exists an efficient way to perfectly simulate
an accepted proof.

2.4 Concrete Examples

The Diffie-Hellman Family. The most natural example of family of trapdoor
hard-to-invert isomorphisms is the Diffie-Hellman one. The machine Gen, on
input the security parameter k, does as follows. First it chooses a random prime
q of size k, and a prime p such that q divides p− 1. Next, it chooses a subgroup
G of order q in Z�

p and a corresponding generator g. Finally it chooses a random
element a in Zq, it sets h = ga mod p and outputs the pair (m, tm) where tm = a
and m is an encoding of (g, p, q, h). This defines our set I.

Now fm is instantiated as follows. Set Xm = Ym = G\{1}, Rm = Zq and
Samplex : Zq → G is defined1 as Samplex(x) = gx mod p. Moreover fm is defined
as (for any X ∈ G\{1}): fm(X) = Xa mod p.

Clearly, to efficiently evaluate fm on a random point X , one should know
either the trapdoor information a or any x such that Samplex(x) = X (assuming,
of course, that the computational Diffie-Hellman problem is infeasible in G):
Sampley(x) = hx. Similarly knowledge of the trapdoor is sufficient to invert fm

on a random point Y : Inv(a, Y) = Y 1/a. However inverting the function without
knowing the trapdoor seems to be infeasible. Nevertheless, Ym = G is efficiently
decidable: Checky(y) simply checks whether yq = 1 mod p or not.

For our functions to be isomorphisms, one just needs a to be co-prime with
q, where q is actually the order of g. For better efficiency, the group informations
(g, p, q) can be fixed, and considered as common trusted parameters. Therefore,
Gen just chooses a and sets h = ga mod p: one just needs to check that h �=
1 mod p and hq = 1 mod p, no witness is required, nor additional proof: Provem

does not need any witness for outputting any proof, since Checkm simply checks
the above equality/inequality.

The RSA Family. Another natural example is the RSA permutation. In this
case the machine Gen on input the security parameter k does as follows. First it
chooses two random primes p, q of size k/2 and sets n = pq. Next, it chooses a
public exponent e such that gcd(e, ϕ(n)) = 1. Finally it outputs the pair (m, tm)
where tm = (p, q) and m is an encoding of (n, e). This defines our set I.

The function fm is instantiated as follows. Set Xm = Ym = Rm = Z
�
n, and

Samplex : Z�
n → Z�

n is the identity function, i.e. Samplex(x) = x. The function
1 Note that we allow a slight misuse of notation here. Actually the function Samplex

should be defined as Samplex : I × Zq → G. However we prefer to adopt a simpler
(and somehow incorrect) notation for visual comfort.

484 Dario Catalano, David Pointcheval, and Thomas Pornin

fm is defined as (for any x ∈ Z�
n): fm(x) = xe mod n. Hence, Sampley(x) =

xe mod n. The Inv algorithm is straightforward, granted the trapdoor. And the
Checky algorithm simply has to check whether the element is prime to n.

As already noticed, since Samplex is easy to invert, the RSA family is not
only a trapdoor hard-to-invert isomorphism family, but also a trapdoor one-way
permutation family. However, to actually be an isomorphism, (n, e) does not
really need to lie in I, which would be very costly to prove (while still possible).
It just needs to satisfy gcd(e, ϕ(n)) = 1, which defines our set J . An efficient
proof of validity is provided in the full version [8], where both Provem and Checkm

are formally defined.

The Squaring Family. As a final example, we suggest the squaring function
which is defined as the RSA function with the variant that e = 2. A problem
here arises from the fact that squaring is not a permutation over Z�

n, simply
because 2 is not co-prime with ϕ(n). However, if one considers Blum moduli
(i.e. composites of the form n = pq, where p ≡ q ≡ 3 mod 4) then it is easy to
check that the squaring function becomes an automorphism onto the group of
quadratic residues modulo n (in the following we refer to this group as to Qn.)
However this is not enough for our purposes. An additional difficulty comes from
the fact that we need an efficient way to check if a given element belongs to Ym

(which would be Qn here): the need of an efficient algorithm Checky. The most
natural extension of Qn is the subset Jn of Z�

n, which contains all the elements
with Jacobi symbol equal to +1. Note that for a Blum modulus n = pq, this
set is isomorphic to {−1, +1} × Qn (this is because −1 has a Jacobi symbol
equal to +1, but is not a square). By these positions we get the signed squaring2

isomorphism:
fn : {−1, +1} × Qn → Jn

(b , x) �→ b× x2 mod n.

For this family, the machine Gen, on input the security parameter k, does as
follows. First it chooses two random Blum primes p, q of size k/2 and sets n =
pq. Then it outputs the pair (m, tm) where tm = (p, q) and m is an encoding
of n. This thus defines our set I. The function fm is instantiated as follows.
Set Xm = Rm = {−1, +1} × Qn, Ym = Jn and Samplex : {−1, +1} × Qn →
{−1, +1} ×Qn is the identity function, i.e. Samplex(b, x) = (b, x). The function
fm is defined as (for any (b, x) ∈ {−1, +1} × Qn): fm(b, x) = b × x2 mod n.
Hence, Sampley(b, x) = fm(b, x). The Inv algorithm is straightforward, granted
the trapdoor. And the Checky algorithm simply computes the Jacobi symbol.

As above, since Samplex is easy to invert, the squaring family is not only a
trapdoor hard-to-invert isomorphism family, but also a trapdoor one-way per-
mutation family. However, to actually be an isomorphism, n does not really need
to be a Blum modulus, which would be very costly to prove. What we need is
just that −1 has Jacobi symbol +1 and any square in Z�

n admits exactly 4 roots.
A validity proof is provided, with the mathematical justification, in the section 6,
which thus formally defines both Provem and Checkm.
2 By signed, we mean that the output of the function has a sign (plus or minus).

IPAKE: Isomorphisms for Password-Based Authenticated Key Exchange 485

3 The Formal Model

3.1 Security Model

Players. We denote by A and B two parties that can participate in the key
exchange protocol P . Each of them may have several instances called oracles
involved in distinct, possibly concurrent, executions of P . We denote A (resp.
B) instances by Ai (resp. Bj), or by U when we consider any user instance. The
two parties share a low-entropy secret pw which is drawn from a small dictionary
Password, according to a distribution D. In the following, we use the notation
D(n) for the probability to be in the most probable set of n passwords:

D(n) = max
P⊆Password

{
Pr

pw
R←D

[pw ∈ P | Card(P) ≤ n]

}
.

If we denote by UN the uniform distribution among N passwords, UN (n) = n/N .

Queries. We use the security model introduced by Bellare et al. [1], to which
paper we refer for more details. In this model, the adversary A has the entire
control of the network, which is formalized by allowing A to ask the following
queries:

– Execute(Ai, Bj): This query models passive attacks, where the adversary
gets access to honest executions of P between the instances Ai and Bj by
eavesdropping.

– Reveal(U): This query models the misuse of the session key by any instance
U (use of a weak encryption scheme, leakage after use, etc). The query is
only available to A if the attacked instance actually “holds” a session key
and it releases the latter to A.

– Send(U, m): This query models A sending a message to instance U . The
adversary A gets back the response U generates in processing the message
m according to the protocol P . A query Send(Ai, Start) initializes the key
exchange algorithm, and thus the adversary receives the flow A should send
out to B.

In the active scenario, the Execute-query may seem rather useless: after all the
Send-query already gives the adversary the ability to carry out honest executions
of P among parties. However, even in the active scenario, Execute-queries are
essential to properly deal with dictionary attacks. Actually the number qs of
Send-queries directly asked by the adversary does not take into account the
number of Execute-queries. Therefore, qs represents the number of flows the
adversary may have built by itself, and thus the number of passwords it may
have tried. Even better, qa + qb is an upper-bound on the number of passwords
it may have tried, where qa (and qb resp.) is the number of A (B resp.) instances
involved in the attack. For the sake of simplicity, we restricted queries to A and
B only. One can indeed easily extend the model, and the proof, to the more

486 Dario Catalano, David Pointcheval, and Thomas Pornin

general case, keeping in mind that we are interested in the security of executions
involving at least A or B, with the password pw shared by them. Additional
queries would indeed use distinct passwords, which could be assumed public in
the security analysis (known to our simulator).

3.2 Security Notions

Two main security notions have been defined for key exchange protocols. The
first one is the semantic security of the key, which means that the exchanged key
is unknown to anybody else than the players. The second one is unilateral or
mutual authentication, which means that either one, or both, of the participants
actually know the key.

AKE Security. The semantic security of the session key is modeled by an
additional query Test(U). The Test-query can be asked at most once by the
adversary A and is only available to A if the attacked instance U is Fresh. The
freshness notion captures the intuitive fact that a session key is not “obviously”
known to the adversary. An instance is said to be Fresh if the instance has
accepted (i.e. the flag accept is set to true) and neither it nor its partner (i.e. the
other instance with same session tag —or SID— which is defined as the view
the player has of the protocol —the flows— before it accepts) have been asked
for a Reveal-query. The Test-query is answered as follows: one flips a (private)
coin b and forwards sk (the value Reveal(U) would output) if b = 1, or a random
value if b = 0.

We denote the AKE advantage as the probability that A correctly guesses
the value of b. More precisely we define Advake

P (A) = 2 Pr[b = b′]− 1, where the
probability space is over the password, all the random coins of the adversary
and all the oracles, and b is the output guess of A for the bit b involved in the
Test-query. The protocol P is said to be (t, ε)-AKE-secure if A’s advantage is
smaller than ε for any adversary A running with time t.

Entity Authentication. Another goal of the adversary is to impersonate a
party. We may consider unilateral authentication of either A (A-Auth) or B (B-
Auth), thus we denote by SuccA−auth

P (A) (resp. SuccB−auth
P (A)) the probability

that A successfully impersonates an A instance (resp. a B instance) in an exe-
cution of P , which means that B (resp. A) terminates (i.e. the terminate flag is
set to true) even though it does not actually share the key with any accepting
partner A (resp. B).

A protocol P is said to be (t, ε)-Auth-secure if A’s success for breaking
either A-Auth or B-Auth is smaller than ε for any adversary A running with
time t. This protocol then provides mutual authentication.

4 Algorithmic Assumptions

In this section we state some algorithmic assumptions we need in order to con-
struct an IPAKE protocol. As already sketched in section 1.2, our basic building

IPAKE: Isomorphisms for Password-Based Authenticated Key Exchange 487

block is a family of trapdoor hard-to-invert bijections F . More precisely each
bijection f ∈ F needs to be a group isomorphism from a group (Xf , ⊕f) into a
group (Yf , ⊗f), where �f (resp. �f) is the inverse operation of ⊕f (resp. ⊗f)3.
As additional assumption we require the existence of a generalized full-domain
hash function G, which on a new input (f, q), outputs a uniformly distributed
element in Yf . This is the reason why we need the decidability of Yf : in practice,
G will be implemented by iterating a hash function until the output is in Yf .

The non-invertibility of the functions in the family F is measured by the
“ability”, for any adversaryA, in inverting a random function (in F) on a random
point, uniformly drawn from Yf :

SuccNI
F (A) = Pr[f R← F , x

R← Xf : A(f, f(x)) = x].

More precisely, we denote by SuccNI
F (t) the maximal success probability for all

the adversaries running within time t. A simpler task for the adversary may be
to output a list of n elements which contains the solutions:

SuccInSetNI
F (A) = Pr[f R← F , x

R← Xf , S ← A(f, f(x)) : x ∈ S].

As above, we denote by SuccInSetNI
F (n, t) the maximal success probability for all

the adversaries running within time t, which output sets of size n.

4.1 The RSA Family: F = RSA

As described in section 2.4 the function f is defined by n and e, Yf = Xf = Z�
n.

And, for any x ∈ Z�
n, f(x) = xe mod n. For a correctly generated n and a valid

e (i.e an e such that gcd(ϕ(n), e) = 1) the non-invertibility of the function is
equivalent to the, widely conjectured, one-wayness of RSA. This leads to the
following

Succow
RSA(t+nTexp) = SuccNI

RSA(t+nTexp) ≥ SuccInSetNI
RSA(n, t) = SuccInSetowRSA(n, t)

where Texp is an upper-bound on the time required to perform an exponentiation.

4.2 The Diffie-Hellman Family: F = DH

Let G = 〈g〉 be any cyclic group of (preferably) prime order q. As sketched in
section 2.4, the function f is defined by a point P = gx in G\{1} (and thus
x �= 0 mod q), and Xf = Yf = G. For any Q = gy ∈ G, f(Q) = gxy.

A (t, ε)-CDHg,G attacker, in the finite cyclic group G of prime order q, gen-
erated by g, is a probabilistic machine ∆ running in time t such that

Succcdh
g,G(∆) = Pr

x,y
[∆(gx, gy) = gxy] ≥ ε

3 For visual comfort in the following we adopt the symbols f, Xf , Yf rather than
(respectively) fm, Xm, Ym.

488 Dario Catalano, David Pointcheval, and Thomas Pornin

Alice Bob

Common password pw
accept← false accept← false

terminate← false

(f, t)
R← Gen(1k)

Alice, f−−−−−−−−−−−→
Bob, seed←−−−−−−−−−−− seed

R← {0, 1}k
p← Provem(f, t, seed)

p−−−−−−−−−−−→ Checkm(f, seed, p)?

r
R← Rf

x← Samplex(f, r)
y ← Sampley(f, r)

PW ← G(f, pw) PW← G(f, pw)
ŷ←−−−−−−−−−−− ŷ ← y ⊗f PW

y′ ← ŷ �f PW, x′ ← Inv(f, t, y′) Auth−−−−−−−−−−−→
Auth valid?⇒ accept← true

accept← true terminate← true

Fig. 1. An execution of the IPAKE protocol: Auth is computed by Alice (Bob resp.)
as H1(Alice‖Bob‖f‖ŷ‖pw‖x) (H1(Alice‖Bob‖f‖ŷ‖pw‖x′) resp.), and sk is computed by
Alice (Bob resp.) as H0(Alice‖Bob‖f‖ŷ‖pw‖x) (H0(Alice‖Bob‖f‖ŷ‖pw‖x′) resp.)

where the probability is taken over the random values x and y in Zq. As usual,
we denote by Succcdh

g,G(t) the maximal success probability over every adversary
running within time t. Then, when g and G are fixed, SuccNI

DH(t) = Succcdh
g,G(t).

Using Shoup’s result [25] about “self-correcting Diffie-Hellman”, one can see that
if SuccInSetNI

DH(n, t) ≥ ε, then SuccNI
DH(t′) ≥ 1/2 for some t′ ≤ 6/ε× (T + nTexp).

4.3 The Squaring Family: F = Rabin

As discussed in section 2.4 if one assumes that the modulus n is the product
of two Blum primes, the signed squaring function f becomes an isomorphism
from {−1, +1}×Qn onto Jn. Furthermore, for a correctly generated n the non-
invertibility of f is trivially equivalent to the one-wayness of factoring Blum
composites. This leads us to the following inequality

Succow
Rabin(t + nTexp) = SuccNI

Rabin(t + nTexp) ≥ SuccInSetowRabin(n, t),

which provides a very tight bound because, in this case, Texp represents the time
required to perform a single modular multiplication (i.e. to square).

5 Security Proof for the IPAKE Protocol

5.1 Description and Notations

In this section we show that the IPAKE protocol distributes session keys that
are semantically secure and provides unilateral authentication for the client A.

IPAKE: Isomorphisms for Password-Based Authenticated Key Exchange 489

The specification of the protocol can be found on Figure 1. Some remarks, about
notation, are in order

– We assume F to be a correct family, with a verifiable sub-family of trapdoor
hard-to-invert isomorphisms f from Xf into Yf . In the following, we identify
m to fm, and thus f . We denote by s the size of I. Furthermore, we denote
by q a lower bound on the size of any Yf .

– For this choice of parameters for the family F , we can define the function
G which is assumed to behave like a generalized full-domain random oracle.
In particular we model G as follows: on input a couple (f, q) it outputs a
random element, uniformly distributed in Yf .

Since we only consider unilateral authentication (of A to B), we just introduce
a terminate flag for B.

5.2 Security Proof

Theorem 1 (AKE/UA Security). Let us consider the protocol IPAKE, over
a family F of trapdoor hard-to-invert isomorphisms, with parameter (s, q), where
Password is a dictionary equipped with the distribution D. For any adversary A
within a time bound t, with less than qs active interactions with the parties (Send-
queries) and qp passive eavesdroppings (Execute-queries), and asking qg and qh

hash queries to G and any Hi respectively: Advake
ipake(A) ≤ 4ε and AdvA−auth

ipake (A) ≤
ε, with ε upper-bounded by

3D(qa + qb) + 6qaSuccInSetNI
F (q2

h, t + 2q2
hτlaw) + qbSuccforge(t) +

qb

2�1
+

Q2

2q
+

Q2
P

2s
,

where qa and qb denote the number of A and B instances involved during the
attack (each upper-bounded by qp + qs), Q ≤ qg + qh + 2qp + qs and QP denotes
the number of involved instances (QP ≤ 2qp + qs), and τlaw is the time needed
for evaluating one law operation. Let us remind that �1 is the output length of
H1 (the authenticator.)

For lack of space, we refer to the full version [8] for the full proof, here we justify
the main terms in the security result.

Ideally, when one considers a password-based authenticated key exchange,
one would like to prove that the two above success/advantage are upper-bounded
by D(qa + qb), plus some negligible terms. For technical reasons in the proof (to
get a clear proof) we have a small additional constant factor. This main term is
indeed the basic attack one cannot avoid: the adversary guesses a password and
makes an on-line trial. Other ways for it to break the protocol are:

– use a function f that is not a permutation, and in particular not a surjection.
With the view of ŷ, the adversary tries all the passwords, and only a strict
fraction leads to y in the image of f : this is a partition attack. But for that,
it has to forge a proof of validity for f . Hence the term qb × Succforge(t);

490 Dario Catalano, David Pointcheval, and Thomas Pornin

– use the authenticator Auth to check the correct password. But this requires
the ability to compute f−1(PW). Hence the term qa × SuccInSetNI

F (·, ·).
– send a correct authenticator Auth, but being lucky. Hence the term qb/2�1 .

Additional negligible terms come from very unlikely collisions. All the remaining
kinds of attacks need some information about the password.

6 A Concrete Example: The SQRT-IPAKE Protocol

An important contribution of this work (at least from a practical point of view)
is the first efficient and provably secure password-based key exchange protocol
based on factoring. The formal protocol appears in Figure 2. Here we describe
the details of this specific implementation.

Alice Bob

Shared password: pw

accept← false accept← false
terminate← false

p1, p2 ∈ BlumPrimes(k/2)

n← p1p2
Alice, n−−−−−−−−−−−→

Bob, seed←−−−−−−−−−−− seed
R← {0, 1}k

p← Provem(n, (p1, p2), seed)
p−−−−−−−−−−−→ Checkm(n, seed, p)?

z
R← Z

�
n, x← z2 mod n

b
R← {0, 1}, y ← (−1)bx2 mod n

PW← G(n, pw) PW ← G(n, pw)
ŷ←−−−−−−−−−−− ŷ ← y × PW mod n

y′ ← ŷ × PW−1 mod n

x′ = SQRT(y′) mod n
Auth−−−−−−−−−−−→

Auth valid?⇒ accept← true
accept← true terminate← true

sk = H0(Alice‖Bob‖n‖ŷ‖pw‖x)
Auth = H1(Alice‖Bob‖n‖ŷ‖pw‖x)

Fig. 2. SQRT – IPAKE protocol

6.1 Description of the SQRT-IPAKE Protocol

In order for the protocol to be correct we need to make sure that the adopted
function is actually an isomorphism. As seen in section 2.4 this is the case if
one assumes that the modulus n is the product of two Blum primes, and fn :
{−1, +1} ×Qn → Jn is the signed squaring function.

IPAKE: Isomorphisms for Password-Based Authenticated Key Exchange 491

We thus set Xf = {−1, +1} ×Qn and Yf = Jn, and, of course, the internal
law is the multiplication in the group Z

�
n. In order for the password PW to be

generated correctly, we need a G(n, ·) hash function onto Jn. Constructing such
a function is pretty easy: we start from a hash function onto {0, 1}k, and we
iterate it until we get an output in Jn. The details of this technique are deferred
to the full version of this paper [8]. Here we stress that if n ≥ 646 then very
few iterations are sufficient. As already noticed, we require Alice to prove the
following about the modulus n, so that the function is actually an isomorphism:

– The modulus n is in the correct range (n ≥ 646);
– The Jacobi symbol of −1 is +1 in Z�

n (this is to make sure that fn is actually
a morphism);

– The signed squaring function is actually an isomorphism from {−1, +1}×Qn

onto Jn (this is to make sure that any square in Z�
n has exactly 4 roots).

Proving the first two statements is trivial. For the third one we need some new
machinery.

6.2 Proof of Correct Modulus

With the following theorem (whose proof can be found in the full version of this
paper [8]) we show that if n is a composite modulus (with at least two different
prime factors) then the proposed function is an isomorphism.

Theorem 2. Let n be a composite modulus containing at least two different
prime factors and such that −1 has Jacobi symbol +1 in Z�

n. Moreover let fn be
the morphism defined above. The following facts are true

1. If fn is surjective then it is an isomorphism.
2. If fn is not surjective, then at most half of the elements in Jn have a pre-

image.

The theorem above leads to the protocol Prove-Surjective (see Figure 3). The
basic idea of this protocol is that we prove that our function is a bijection by
proving it is surjective. Soundness follows from the second statement. However,
in order to fall into the hypotheses of the theorem, we need to make sure n
is actually a composite modulus of the required form (i.e. with at least two
distinct prime factors). We achieve this with the Prove-Composite protocol
(see Figure 3). The correctness (completeness, soundness and zero-knowledge
properties) of these protocols is deferred to the full version of this paper [8].

Remark 3. We point out that our protocol is very efficient, for the verifier, in
terms of modular multiplications. It is also possible for Alice to use the same
modulus for different sessions.

Acknowledgments

We thank the anonymous referees for their fruitful comments.

492 Dario Catalano, David Pointcheval, and Thomas Pornin

Protocol Prove-Composite Protocol Prove-Surjective

H2(n, ·, ·) and H4(n, ·, ·) are full-domain hash functions onto Jn

H3 (H5 resp.) is a random oracle onto {0, 1}k ({0, 1}� resp.)

Bob chooses a random seed seed and sends it to Alice

For i← 1 to �, Alice
1. Sets yi = H2(n, seed, i) ∈ Jn

2. Computes (βi, αi,0, αi,1, αi,2, αi,3)
such that
– αi,0 = −αi,1 mod n
– αi,2 = −αi,3 mod n
– α2

i,j = yiβi mod n (j = 0, . . . , 3),
where βi ∈ {−1, +1}

3. Sets hi,j = H3(n, αi,j) (j = 0, . . . , 3)

One defines c1 . . . , c� = H5(n, seed, {hi,j})

1. Sets zi = H4(n, seed, i) ∈ Jn

2. Computes (bi, xi) = f−1(zi) such
that (bi, xi) ∈ {−1, +1} ×Qn

3. Computes a value γi such that
γ2

i = xi mod n (this is to make
sure that xi is actually in Qn);

Alice answers with, for i = 1, . . . , �,
(βi, αi,2ci , αi,2ci+1) (γi, bi)

Bob checks that, for each i = 1, . . . , �,
1. the hi,j , for j = 0, . . . , 3, are all distinct
2. αi,2ci = −αi,2ci+1 mod n
3. hi,2ci = H3(n, αi,2ci)

and hi,2ci+1 = H3(n, αi,2ci+1)
4. H2(n, seed, i) = βiα

2
i,2ci

mod n

biγ
4
i = H4(n, seed, i) mod n

Fig. 3. Proof of Correct Modulus

References

1. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Se-
cure Against Dictionary Attacks. In Eurocrypt ’00, LNCS 1807, pages 139–155.
Springer-Verlag, Berlin, 2000.

2. M. Bellare and P. Rogaway. The AuthA Protocol for Password-Based Authenti-
cated Key Exchange. Contributions to IEEE P1363. March 2000.

3. S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Pro-
tocols Secure against Dictionary Attacks. In Proc. of the Symposium on Security
and Privacy, pages 72–84. IEEE, 1992.

4. C. Boyd, P. Montague, and K. Nguyen. Elliptic Curve Based Password Authen-
ticated Key Exchange Protocols. In ACISP ’01, LNCS 2119, pages 487–501.
Springer-Verlag, Berlin, 2001.

5. V. Boyko, P. MacKenzie, and S. Patel. Provably Secure Password Authenticated
Key Exchange Using Diffie-Hellman. In Eurocrypt ’00, LNCS 1807, pages 156–171.
Springer-Verlag, Berlin, 2000.
Full version available at: http://cm.bell-labs.com/who/philmac/research/.

6. E. Bresson, O. Chevassut, and D. Pointcheval. Security Proofs for Efficient
Password-Based Key Exchange. In Proc. of the 10th CCS, pages 241–250. ACM
Press, New York, 2003.

IPAKE: Isomorphisms for Password-Based Authenticated Key Exchange 493

7. E. Bresson, O. Chevassut, and D. Pointcheval. New Security Results on Encrypted
Key Exchange. In PKC ’04, LNCS, pages 145–159. Springer-Verlag, Berlin, 2004.

8. D. Catalano, D. Pointcheval, and T. Pornin. IPAKE: Isomorphisms for Password-
based Authenticated Key Exchange. In Crypto ’04, LNCS. Springer-Verlag, Berlin,
2004. Full version available from http://www.di.ens.fr/users/pointche/.

9. W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, IT–22(6):644–654, November 1976.

10. Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong Key-Insulated Signature Schemes.
In PKC ’03, LNCS, pages 130–144. Springer-Verlag, Berlin, 2003.

11. D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM Journal
on Computing, 30(2):391–437, 2000.

12. T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. IEEE Transactions on Information Theory, IT–31(4):469–
472, July 1985.

13. R. Gennaro and Y. Lindell. A Framework for Password-Based Authenticated Key
Exchange. In Eurocrypt ’03, LNCS 2656, pages 524–543. Springer-Verlag, Berlin,
2003.

14. O. Goldreich and Y. Lindell. Session-Key Generation Using Human Passwords
Only. In Crypto ’01, LNCS 2139, pages 408–432. Springer-Verlag, Berlin, 2001.

15. S. Halevi and H. Krawczyk. Public-Key Cryptography and Password Protocols.
In Proc. of the 5th CCS. ACM Press, New York, 1998.

16. J. Katz, R. Ostrovsky, and M. Yung. Efficient Password-Authenticated Key Ex-
change Using Human-Memorizable Passwords. In Eurocrypt ’01, LNCS 2045, pages
475–494. Springer-Verlag, Berlin, 2001.

17. S. Lucks. Open Key Exchange: How to Defeat Dictionary Attacks Without En-
crypting Public Keys. In Proc. of the Security Protocols Workshop, LNCS 1361.
Springer-Verlag, Berlin, 1997.

18. P. MacKenzie, S. Patel, and R. Swaminathan. Password-Authenticated Key Ex-
change Based on RSA. In Asiacrypt ’00, LNCS 1976, pages 599–613. Springer-
Verlag, Berlin, 2000.

19. P. MacKenzie and R. Swaminathan. Secure Network Authentication with Password
Identification. Submission to IEEE P1363a. August 1999.

20. T. Okamoto and S. Uchiyama. A New Public Key Cryptosystem as Secure as
Factoring. In Eurocrypt ’98, LNCS 1403, pages 308–318. Springer-Verlag, Berlin,
1998.

21. P. Paillier. Public-Key Cryptosystems Based on Discrete Logarithms Residues. In
Eurocrypt ’99, LNCS 1592, pages 223–238. Springer-Verlag, Berlin, 1999.

22. M. O. Rabin. Digitalized Signatures. In R. Lipton and R. De Millo, editors,
Foundations of Secure Computation, pages 155–166. Academic Press, New York,
1978.

23. R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public Key Cryptosystems. Communications of the ACM, 21(2):120–126,
February 1978.

24. A. Sahai. Non-Malleable Non-Interactive Zero-Knowledge and Chosen-Ciphertext
Security. In Proc. of the 40th FOCS. IEEE, New York, 1999.

25. V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems. In
Eurocrypt ’97, LNCS 1233, pages 256–266. Springer-Verlag, Berlin, 1997.

26. F. Zhu, A. H. Chan, D. S. Wong, and R. Ye. Password Authenticated Key Exchange
based on RSA for Imbalanced Wireless Network. In Proc. of ISC ’02, LNCS 2433,
pages 150–161. Springer-Verlag, Berlin, 2002.

	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Preliminaries
	2.1 Trapdoor Hard-to-Invert Isomorphisms
	2.2 Verifiable Sub-family of Trapdoor Hard-to-Invert Isomorphisms
	2.3 Zero-Knowledge Proofs of Membership
	2.4 Concrete Examples

	3 The Formal Model
	3.1 Security Model
	3.2 Security Notions

	4 Algorithmic Assumptions
	4.1 The RSA Family: F = RSA
	4.2 The Diffie-Hellman Family: F = DH
	4.3 The Squaring Family: F = Rabin

	5 Security Proof for the IPAKE Protocol
	5.1 Description and Notations
	5.2 Security Proof

	6 A Concrete Example: The SQRT-IPAKE Protocol
	6.1 Description of the SQRT-IPAKE Protocol
	6.2 Proof of Correct Modulus

	Acknowledgments
	References

