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Abstract. This paper introduces a new block cipher, and discusses its
security. Its design is optimized for high-bandwidth applications that
do not have high requirements on key-schedule latency. This paper also
discusses several security issues about such an application: harddisk en-
cryption.
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1 Introduction

Today’s secret key cryptosystems are designed to be versatile enough to fit most
usages in a wide variety of environments. The recently chosen new american
standard of symetric encryption, the AES [1], is a perfect illustration of that
fact: appart from its seemingly good security, it was chosen because it could run
reasonably fast on a modern workstation, a low-end personal digital assistant,
a smartcard or a specific ASIC. This speed and easiness of implementation are
requirements for what the AES was designed to be: a standard; interoperability
issues imply that all applications must use the same algorithm, so it must be
good everywhere.

However, there are some applications where requirements are different: one
of them is on-the-fly harddisk encryption. Such encryption is needed to pre-
vent divulgation of important data if a harddisk is stolen, or scanned during an
inactivity period (some sort of lunch-time passive attack). This is especially im-
portant for mobile systems, such as portable computers. Another class of attacks
that could be worth to counter, is active attacks: an attacker modifies data on
the disk. Even if the modification is essentially random, such tampering should
be at least detected.

Let us detail what is needed, and what is not:

– We need a very fast cipher; security is not a goal in itself, but a necessary evil
used to protect other jobs; and since modern operating systems implement
multitasking, only a marginal proportion of the cpu power should be used
to perform encryption.

– We do not care about key-schedule latency: the key-schedule is performed
only once per session, at boot time, and the cost can be further reduced, so
that it should doable in a user-compatible time (the user will not want to
wait several minutes every morning).
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– We encrypt data-blocks of size multiple of 512 bytes: this is the standard size
of an harddisk sector; all reads and writes from and to the disk are performed
with this granularity at least (on some systems, it might be higher).

– We need to handle random accesses to the disk, with low overhead; we cannot
afford, for instance, extra physical reads on the disk.

– We run on a modern computer, with many registers1.

Classical block ciphers are ruled out for speed reasons; as a rule of thumb,
the maximum allowed cpu overhead should be 15%, on a 1 GHz cpu, with a
disk running at 20 Mbytes per second. This means that a bandwidth of at least
120 Mbytes per second (when full cpu is used) is needed. Algorithms such as
the AES [1], Blowfish [2] or CS-Cipher [3], although considered as fast, will be
limited to about 50 Mbytes per second.

Stream ciphers are also out of the question, due to random access; stream
ciphers have a state, that needs to be maintained, in order to encipher and deci-
pher. The initial state depends on the key, and its construction usually requires
some time. For instance, although the bandwidth obtained with RC4 is high,
the key schedule is rather slow with regards to the production of 512 bytes of
stream. Besides, the ciphertext is often too malleable: if the attacker guesses the
plaintext, he can easily change that plaintext to whatever he wants.

So we need some sort of very fast block cipher; we present such a cipher in
this paper. We will first recall the so-called bitslice programming technique, as
described by Eli Biham [4], then describe the algorithm itself, and discuss imple-
mentation and security issues. A final section will explicit some general problems
related to harddisk encryption, and show how our cipher helps in solving them.

2 Bitslice

Bitslicing is an implementation trick, classical among electronicians, but never
really published, and therefore rediscovered several times. Eli Biham was the first
cryptographer to document it in [4]; the method basically boils down to an al-
ternate representation of data that allows software implementations to work like
hardware ones, with similar optimizations. Bitslice code is also called orthogonal
code, to refer to this alternate representation.

2.1 Abilities of Modern Processors

Modern processors are more and more of the RISC trend; this means that they
have many, wide registers, and are able to perform bitwise logic operations be-
tween these registers at high speed. They are however relatively bad at handling
byte-formatted data, such as ASCII text.

1 This extends to the PC, although the Intel instruction set does include only a limited
number of addressable registers; see section 2.1.
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An emblematic processor is the Alpha [5]: it has 32 64-bit registers, all of them
being equivalent; there is no specialized register2. All calculating instructions
take two registers as operands, and a third one as destination. This design is
a good example of what processors will look like in the future; Intel chosed
a similar design for its new, market-leading processor, the Itanium [6], which
should replace the long-lived Pentium family. The Alpha and the Itanium are
native 64-bit processors.

Actually, Pentium processors are already quite RISC: they sure still han-
dle the old 8080-compatible CISC code, with few registers and many complex
instructions; but most of those complex instructions are there for backward-
compatibility only, and are slow, so the compilers do not use them. Besides,
there are many internal registers, and the processor renames, aliases and dupli-
cates the registers visible to the programmer. Memory accesses to the internal
cache memory are also made very fast, so we can consider those processors as
being on the RISC side. The Pentium is a 32-bit processor, but already owns
some 64-bit registers, in the MMX unit.

2.2 Orthogonalization of Data

The natural reflex of the cryptosystem programmer, when a 32-bit data must be
used, is to store it into a register. This approach has the following drawbacks:

– When the registers are wider than the data, some of the computing power
of the processor is lost.

– Bit permutations cost much; those operations are current in cryptosystems
since they help in creating a correct avalanche effect. But those permutations
are a mere data routing, and do not perform any real calculation.

The orthogonal representation is the following: spread the data among many
registers, one bit per register. You then calculate the algorithm as a circuit, with
logic gates that map cleanly to the native bitwise operations of the processor.
Since those operations are bitwise, they are performed on all bits of the registers
at the same time; if you have n-bit registers, you perform n instances of the
algorithm simultaneously. This is heavy parallelism, quite suited to situations
where you have much data to encrypt, in ECB mode.

There remains the problem of getting input data to the appropriate storage
ordering; this is equivalent to the transposition of a matrix. The figure 1 illus-
trates this transposition. See [7] for a O(n log n) method of transposition of a
n× n matrix, when n-bitwise logical operations and shiftings are atomic.

2.3 Applicability

With bitslice, bit permutations are “free”: the code just has to use the right
register. This is solved at compilation time and does not induce runtime cost.
2 There is actually one: the register 31 contains always 0; but since this value does
not change, it can be safely “duplicated” inside the processor and therefore does not
constitute a bottleneck.
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Data

Registers

Fig. 1. othogonalization of data

Moreover, the ALU (Arithmetic and Logic Unit) is used at its full potential,
since the whole width of registers is used. However, some operations become
much more complex: table lookups must be replaced by equivalent circuitry,
which means BDD (Binary Decision Diagrams); additions require manual carry
propagation; multiplications are definitely out of the question.

Moreover, the algorithm must be representable as a circuit; this is anyway a
desirable characteristic for block ciphers, since data-dependant branches lead to
timing attacks [8].

To sum up, some cryptosystems are well-optimized for bitslice, others are
not. DES can be implemented very efficiently this way; it was done for the
DESchall [9] (a software-based DES cracking challenge by exhaustive search of
the key space). Serpent [10], candidate to the AES, was also designed to be
implemented using these technics. We present in this paper a new algorithm,
called FBC (as “Fast Bitslice Cipher”), which is optimized for speed under a
bitslice implementation.

3 The FBC Algorithm

3.1 General Structure

The FBC algorithm is a r-round Feistel cipher; it works on w-bit values (w is
even). The confusion function is simple: each output bit is the bitwise combina-
tion of two different input bits. Four combinations are used: and, or, nand and
nor. Which combinations are used on which bits, is key-dependant and round-
dependant. The figure 2 illustrates this setup. Due to practical implementation
issues, w must not exceed 512.

The three main ideas are:

– use a simple, fast round function with many rounds (for instance, r = 64);
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Fig. 2. one round of FBC

– derive each round subkey from the key using a cryptographically strong
pseudo-random generator (so that attacks on subkeys cannot be proven to
exist, neither can they compromise other subkeys);

– make code generation part of the key schedule; this is slow but allows for
many key-dependant features.

In a more formal way: for each binary value, we count bits from left to right,
leftmost bit is numbered 1. For the round i, the input is split into two equal parts
of size w/2: the left part Li and the right part Ri. There exist w/2 functions
τ j
i (1 ≤ j ≤ w/2) and two permutations φi and ψi of w/2 elements such that:

∀j, τ j
i = and, or, nand or nor

∀j, φi(j) �= ψi(j)

The result Ti of the confusion function is such that the bit j of Ti (1 ≤ j ≤
w/2) is equal to τ j

i (φi(j), ψi(j)). The output of the round is the concatenation
of L′

i and R′
i, in that order, where:

L′
i = Ri

R′
i = Li ⊕ Ti

After the last round, the left and right part of the result are swapped; this is
made so that the decryption algorithm is exactly the same than the encryption
algorithm, but the definition of the φi, ψi and τ j

i functions.
To complete this scheme, we must specify how those functions are chosen

from the master key. We use the master key as a seed for a pseudo-random
generator, that uses a cryptographically strong hash function.

3.2 The Pseudo-random Generator

The secret key is a k-bit value, where k ranges from 0 to 352. As usual, if k is
lower than 80, the scheme is to be considered as vulnerable to exhaustive key
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search attacks. The AES defines key sizes of 128, 192 and 256 bits; FBC allows
these, and other sizes as well, so any useful security level can be achieved with
FBC.

We use the hash function SHA-1 as defined in [11]. This specification defines
the application of SHA-1 on an arbitrary bit stream, and includes a padding
method to extend the bit stream to a size multiple of 512. We do not use that
padding, so “SHA” is to be considered in this paper as “application of the SHA-1
core function to an unpadded block of 512 bits”.

The key K is extended to the 352-bit value K ′ by appending zeroes to its
right. S is a 160-bit variable which will contain the “state” of the generator. The
algorithm is the following:

– 1. S ← 0
– 2. S ← SHA(K ′||S)
– 3. The 20 bytes of S are emitted (leftmost first)
– 4. Return in 2

(|| denotes concatenation).
Therefore the generator emits bytes. These bytes will be used to choose

random numbers between 0 and w/2 − 1, which is exactly why w must be at
most 512; otherwise, the definition of the key schedule should be adapted.

We will have to choose integers ranging from 0 to some limit n, where n is a
posivite number strictly smaller than w/2. We calculate m the greatest positive
multiple of n+ 1 that is smaller or equal to 256; for instance, if n = 6, we have
m = 252.

To choose a random number from 0 to n, we get one byte b from the random
generator; if this byte is greater or equal to m, we get another byte, until we
have a value strictly smaller than m. It is easy to see that the average number of
invocations of the random generator is at most 2, so this process is not especially
slow. The random number is defined to be the euclidian rest of the division of b
by n + 1. This process ensures that all integers between 0 and n have an equal
probability to appear.

3.3 Choice of a Random Permutation

We must choose random permutations of w/2 elements; we will use the following
algorithm:

– 1. Fill an array p of w/2 elements with the numbers from 1 to w/2 in as-
cending order (∀i, p[i] = i); this array represents the identity permutation.

– 2. For i ranging from 2 to w/2
– 3. Choose a random integer ai between 0 and i− 1
– 4. If ai + 1 �= i, swap the contents of p[ai + 1] and p[i] (this is equivalent to

the composition of p with the transposition (i (ai + 1)))
– 5. End for
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The chosen permutation is represented by the contents of p at the end of
the execution of the algorithm (p[5] = 8 means that the permutation sends the
fifth element of its input to the eigth emplacement of its output). This algorithm
ensures that all permutations of w/2 elements have an identical probability to
be chosen [12].

3.4 Choice of the Elements of Each Round

To choose the elements constituting the round i (the two permutations φi and
ψi, and the w/2 boolean functions τ j

i ), we proceed this way:

– 1. Choose randomly φi.
– 2. Choose randomly ψi.
– 3. If there exists at least one j between 1 and w/2 such that φi(j) = ψi(j),

go back to 2.
– 4. For each j from 1 to w/2, get one random byte; the euclidian rest of the

division of that byte by 4 is a value between 0 and 3. The function τ j
i will

be a and, or, nand and nor for values of, respectively, 0, 1, 2 and 3.

The elements of each round are chosen from the first round to the last. On the
average, for each φi, we will have to try e ≈ 2.7 permutations ψi before finding
one matching the criterion of point 3 (finding a matching φi is equivalent to
finding ψi ◦ φ−1

i , permutation with no fixed point; see [13] for the proportion of
such permutations among all permutations of w/2 elements).

4 Implementation of FBC

4.1 Software Implementation

FBC is designed to be implemented in software, using bitslicing techniques. Such
code is rather difficult to write, but we developped some sort of automatic tool
to produce bitsliced C code from an ad hoc description of the algorithm, which
can be generated from the key schedule algorithm. That tool is not very well
developped but is available for free download and use (see [14]). The C code
generated for a fully deployed 64-round FBC is a huge function with about 5000
local variables and 5000 statements; the C compiler fails utterly on such input,
so the code must be sliced into small groups of four rounds or so, easier to
understand by the compiler.

We ignore the cost of othogonalization of data before encrypting and af-
ter encryption; actually, not performing such orthogonalization is equivalent to
performing a known, fixed permutation on input and output data blocks (the
512-bit blocks if we perform 64 parallel encryptions with a 64-bit block size).
Such a permutation has no security implication, so we can add that permutation,
which actually voids the cost of orthogonalization.

Encryption bandwidth achieved for the moment on an Alpha 21164 processor
running at 500 MHz is about 32 Mbytes/s using FBC with 64-bit words and
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64 rounds (w = 64, r = 64); the code is not yet fully optimized and we are still
working on it. This speed is half the speed requested (we wanted 120 Mbytes/s
on a 1 GHz processor) but is explanable by the relatively old design of the 21164
(that processor was first announced in August 1994, which is a very remote epoch
in the rapidly moving chip industry). The 21164 can issue up to four instructions
in each cycle, but only two load/store instructions and two logical instructions.
Moreover, a load instruction cannot occur during the second next cycle of a
store instruction. This restriction, bound to the aging design of the 21164, is
responsible for the seemingly bad performance of FBC on that processor; the
newer 21264 does not have that problem.

The number of logical τ functions to calculate for one encryption is wr
2 . If

n is the size of each register, the bitslice code will calculate n parallel instances
of the algorithm, thus encrypting wn bits. The number of function evaluations
needed for each data bit is then wr

2wn = r
2n . Since the wanted rate is about one

bit per clock cycle, we must execute r
2n τ functions per cycle (it is worth noticing

that this value does not depend upon the block size used).
Bitslicing code uses many registers, much more than the really available

registers in the processor; therefore, those are to be considered as a cache on the
stack, where the values are stored. So data management still comes up as the
most constricting issue. Each τ function will require two input operands and one
output operand; since each input bit is used twiced in two different τ functions,
the number of memory management operations needed can be reduced to one
load and one store for each function. Due to the restrictions on such operations,
an average of 3 cycles are needed per function. With the unavoidable additional
cost of data transfering (this is administrative task outside the core of the cipher),
this explains the “low” rate achieved on the 21164 (that rate is equal to the best
rates achieved by ciphers such as the AES on the same machine).

However, the current market-leading Alpha processor is the 21264, which has
much lower restrictions on memory accesses; from its specifications, it should
achieve the correct performance (one cycle per bit enciphered), whereas classical
cryptosystems, which use more complex structures of the processor, will not
benefit as much of the generation shift (speed measurements [15] from the AES
competition show that the fastest candidates would run at 2 clock cycles per bit
enciphered on a 21264-equivalent processor). Optimization of the code on the
21264 architecture is still undergoing work.

To the very least, “64 rounds” is a conservative number, in a security point
of view. That number could be lowered, and the speed of FBC would raise
correspondingly.

4.2 Hardware Implementation

FBC is well-suited for FPGA (“Field Programmable Gate Arrays”) implemen-
tations. FPGAs are programmable chips, which can host any circuit, and can be
redesigned in little time (less than a second) with no loss.

For a FPGA implementation, the key schedule algorithm would produce a
circuit design, to be loaded into the FPGA. Bitslicing (which is parallelization
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in space) becomes pipelining (parallelization in time), so a fully deployed FBC
should run at one block per cycle; since each round is very simple (only one
logic gate layer per round), a very fast clocking rate could be achieved. Since
late Xilinx FPGA [16] chips may run at rates over 150 MHz, an instance of
FBC with 64-bit words on such a chip would encipher over 10 Gbits of data per
second; this is the fastest data rate achieved by the best production optic fibers.

If speed is at stake, specific hardware usable, and key schedule time unim-
portant, then FBC is the way to go.

5 Security of FBC

Security of FBC is based upon the following paradigms:

– many rounds,
– unpredictable random subkeys,
– key-dependant permutations and non-linear functions.

5.1 Many Rounds

It has been said for a long time that “take whatever round function you want,
it will be secure if you put up enough rounds”. This assertion used to be a joke,
but it actually makes much sense.

Modern cryptanalytic attacks, such as differential and linear cryptanalysis,
tend to have a complexity exponential in the number of rounds; especially, if the
probabilistic advantage of the attacker is 1/2 on one round, then 64 rounds will
lower that advantage to 2−64, a quite appropriate number for a FBC operating
on 64-bit blocks.

5.2 Unpredictable Random Subkeys

Most cryptanalytic attacks use the fact that information on the key used in
one round somehow shows up in a predictable way in some other rounds. Thus
FBC produces all key-dependant round material with a cryptographically strong
pseudo-random generator, seeded by the master key. If any information, learned
or guessed, on the subkey of some rounds can be applied to another round by the
attacker, then this would contradict the strength of the generator. Besides, even
if all key-dependant material are guessed, thus giving some strong knowledge
about the output of the generator, it would still be computationnaly infeasible
to guess the master key; thus, a successful attack on a FBC-encrypted link with
a simple daily key-updating policy would be limited to one day of decryption.

5.3 Key-Dependant Permutations and Non-linear Functions

In FBC, the permutations are made key-dependant as an attempt to make the
avalanche effect unanalyzable by the attacker. One consequence is that permu-
tations cannot be guaranteed to be “strong”. We did some sample measures of
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the avalanche effect; here is the average number of data bit potentially modified
by one bit after several rounds, for w = 64:

rounds bits potentially modified
1 2.00
2 4.91
3 11.05
4 22.81
5 39.54
6 54.76
7 62.34
8 63.93
9 63.99
10 64.00

This means that the total avalanche effect is obtained in 10 rounds, to com-
pare with the suggested value of 64 rounds.

The τ functions are dependant on the key, and chosen among the four func-
tions and, or, nand and nor, which are the four symetric non-linear boolean
functions. Given random inputs and random functions in this set, the output is
well-balanced and statistically not correlated to the input.

5.4 Security Sum Up

The FBC design looks quite secure, with the rule of thumb r = w, which means
“as many rounds as bits in the block size”. This is a conservative estimation,
based upon the assumption that if the block size if 64 bits, then the scheme
should be secure against attacks using 264 adaptively chosen plaintexts, which
is far from being applicable in real life. Typically, if the enciphered text is a
harddisk, the maximum amount of ciphertext provided is about 232 blocks or
so. Yet, security margins should not be too much fiddled with.

6 Harddisk Encryption

The problem of harddisk encryption is complex, and depends upon the type of
attack considered. We will consider passive and active attacks, and detail the
threat model and several corresponding solutions.

6.1 Passive Attacks

The model is the following: a computer stores confidential data on its harddisk;
the computer or its disk might be stolen while it is not powered, therefore the
data on the disk must be stored encrypted only. The attacker is supposed to
be able to guess most of the encrypted plaintext, and must not learn anything
about the remaining plaintexts.



Transparent Harddisk Encryption 283

Several products already address, or try to address this security issue. Some
work on a file basis, masking the real names and internal contents of the files;
this maps cleanly to network filesystems protocols such as NFS or Samba, which
use file-oriented semantics. However, this leaks information, mainly the number
of files created, their sizes and modification dates. Therefore the real security
provided by those systems is only marginal.

Other products build up real enciphered blocks of data, upon which standard
filesystems are applied. Those products use classical block ciphers and induce a
performance hit which leads users into reserving encryption for really important
data only. This may help the attacker know what computers hold his target inside
a large company; good security can therefore be achieved only if all harddisks
are completely enciphered, which is possible only if the performance hit is very
small.

FBC is designed to encipher data in ECB mode, so that the parallelism
given by the bitslice representation of data can be used. ECB mode has the
following problem: input blocks are not randomized. Real life data is often very
redundant, and equal blocks will be enciphered the same, and the attacker will
be able to detect them. The countermeasure is to “add” a counter: each block,
before encryption, is combined with its block number prior to encryption, with
an addition or a bitwise xor. The cost of such modification is neglectable with
regards to the cost of encryption itself (on an Alpha, it will cost one cycle for
64 bits of data).

One FBC issue is that the key schedule implies the generation of code, a
rather slow process (it can take up to several minutes) and which uses much
code (a C compiler is not a small application, usually). This can be addressed
the following way: the result of the key schedule, that is, the code that encrypts
and decrypts, is stored encrypted on the disk, using some other block cipher, the
AES for instance. The decryption is done only once at boot time, so there is no
real performance issue here. The key used to decipher the FBC code needs not
be the same key as the FBC one.

6.2 Active Modifying Attacks

We consider here the following model: the computer is stolen while being unpow-
ered, its contents are modified, and the computer is put back in place before the
theft is noticed. A random and destructive modification cannot be prevented,
but we want to be sure that it would not go unnoticed. No existing product
actually addresses this issue.

The classical solution is to store a MAC, which is easily built up with a hash
function: the entire encrypted disk content, appended to some secret key, is
processed through the function, and the result is written to some non-encrypted
area of the disk (one such area must exist, to store the base decrypting software,
that asks for the user key). The major drawbacks of this approach are:

– The speed of the process is limited to the speed of the disk, so it can take
an impressive amount of time (one hour on today’s typical disk); this has to
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be performed at boot time, and no work can take place during this check.
This is not acceptable from the user’s point of view.

– More critical, the MAC must be calculated again at shutdown time. This is
even more impossible to force on the user, especially since some shutdowns
are due to OS crash or low battery.

– Even if the disk is logically almost empty, its whole content must be pro-
cessed. An alternative is to build the MAC only on the blocks that contains
allocated data, but this still uses a gruesome amount of time (today’s basic
operating system installation uses several hundred megabytes of disk space,
not including oversized applications).

Here is one solution addressing these problems: each block is double-encryp-
ted in the following manner: if the block number N contains P , and E is the
encryption function, then its encrypted counterpart is C = E(E(P ) ⊕ N). For
each file, the exclusive or of all its constituting blocks is stored inside a file-
specific structure that is also encrypted (on some systems3, such a structure
exists and is called an inode). This encrypted xor is the MAC.

Using this scheme, the verification of files can be made asynchronously, as a
background task; only a locking procedure must be used so that an individual
file may not be used prior to its verification. More important, the MAC of each
file is maintained during normal operation; this means that a modification of a
file requires the reading of either the overwritten data (so that its contribution
to the file MAC can be taken away) or the remaining data (that is the recompu-
tation of the MAC). This is not an important cost, because, most of the time,
modifications of files are either appending data to the end of the file, or emptying
the file and rewriting it from scratch. Anyway, when modifying a file, the size of
the extra reads is limited to half the size of the file.

The xor with the block number between the two encryptions ensures that
the data blocks are not swappable by the attacker; this operation is isolated from
the plaintext and from the ciphertext by the two encryptions. The assumption
is that the block cipher is a random permutation, therefore any modification to
the ciphertext leads to a random, uncontrollable modification of the plaintext.

The main drawback of this scheme is the double encryption, which halves
performance. Therefore the use of a very fast cipher is critical for such a design.

7 Conclusion

We presented a new cipher, FBC, designed to achieve high encryption speed on
a modern workstation, adapted to on-the-fly harddisk encryption. We presented
some arguments with regards to its security, and discussed some implementa-
tion issues. We also discussed some issues related to the problem of harddisk
encryption and presented a generic scheme to ensure data integrity at low cost.

We believe that such work will be more and more used in the future, as mobile
computing is generalizing at a fast pace. As a side note, OpenBSD [17] (a Unix-
like system specialized in security) already includes an encryption mechanism for
3 Actually, all Unix-like systems, including MacOS and Windows NT/2000.
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its swap space. An open question (which does not apply to swap space, since the
contents of swap space are not used across reboots) is the possibility of building
a secure integrity verification scheme, that does not imply a complex shutdown
procedure, neither double encryption, nor too many extra reads when a file is
modified.
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