
Digital Signatures Do Not Guarantee
Exclusive Ownership

Thomas Pornin and Julien P. Stern

Cryptolog International, Paris, France
thomas.pornin@cryptolog.com and julien.stern@cryptolog.com

Abstract. Digital signature systems provide a way to transfer trust
from the public key to the signed data; this is used extensively within
PKIs. However, some applications need a transfer of trust in the other
direction, from the signed data to the public key. Such a transfer is
cryptographically robust only if the signature scheme has a property
which we name exclusive ownership. In this article, we show that the
usual signature algorithms (such as RSA[3] and DSS[4]) do not have that
property. Moreover, we describe several constructs which may be used
to transform a signature scheme into another signature scheme which
provides exclusive ownership.

1 Introduction

Digital signature schemes based on public-key cryptography are now used in
many communication protocols. Signatures are used to convey trust from a
public key to the data which is signed: if the public key is known (by some
other mean) to be associated with some entity who “owns” it (i.e., the entity
has exclusive access to the corresponding private key), then a valid signature
on some data “proves”, in a way verifiable by third parties and non repudiable
by the key owner, that the key owner had access to the data and deliberately
agreed to that association between his public key and the data. This assumes,
of course, that no other entity than the key owner has access to the private key,
and that the signature and verification algorithms are uncrackable with today’s
technology. Various semantics can be attached to the signature; PKIs use it as
a way to certify that the data is correct (the key owner formally guarantees the
exactness of the data).

In this article, we are interested in the “reverse” problem, in which a signature
on some data is known, and we want to know whether the existence of a public
key which validates that signature implies that the corresponding private key
was used to produce the signature in the first place. It so happens that usual
signature algorithms such as RSA[3] and DSS[4] do not provide such guarantee;
however, some applications, such as the certificate revocation process through
CRLs in X.509[1], need that property. This problem has already been partially
studied in [5].

We will first define, informally and then formally, what is the actual property
that we are interested in; we call it exclusive ownership and we will define several

subdivisions. Then we will describe in detail how some widely used algorithms
do not provide exclusive ownership. A further section will show how this can be
fixed.

This work was partially supported by the French Ministry of Research RNRT
X-CRYPT project.

1.1 Informal Definitions

We informally consider a signature scheme. An entity A owns a key pair which
we note (KA

pub,KA
priv) (the public key and the private key, respectively). We

suppose that the signature scheme has the usual properties which make that we
deem the scheme secure (i.e., it is computationaly infeasible, without knowledge
of the private key, to compute existential forgeries[6]).

We now consider an external entity B which has no knowledge of the private
key KA

priv. B has access to a set of triplets (KA
pub,m, s) where KA

pub is A’s public
key, m is some binary message, and s is a valid signature of m relatively to KA

pub.
B will then try to produce a new triplet, which is accepted by the verification
algorithm, and where some or all of the three triplet components are not part
of the set of components issued by A. In other words, A has signed, using its
(unique) private key, a set of distinct messages, and produced the corresponding
signatures. B wants to produce a triplet comprising a public key, a message
and a signature, such that the public key is distinct from A’s public key, or the
message is not one of those signed by A, or the signature is not one of those
computed by A, or any combination of some of those properties. Moreover, we
require the following properties:

– when the public key produced by B is not equal to A’s public key, B knows
the corresponding private key;

– when both the message m and the signature s are kept from the values issued
by A, s must be a valid signature for m relatively to KA

pub (in other words,
if B keeps one of A’s messages and one of A’s signatures, the signature must
apply to that message).

The figure 1 explicits the eight possible types of triplets that B may attempt
to produce. In that figure, a triplet issued by B may contain:

– either A’s public key KA
pub, or a different public key KB

pub for which B knows
the corresponding private key KB

priv;
– either one of the messages m signed by A, or a new message m′;
– either one of the signatures s issued by A, or a new signature s′.

Transforms 1, 6 and 8 are trivial:

– for transform 1, B just selects one of the triplets issued by A;
– for transform 6, B creates its own key pair using the normal procedure, and

then signs one of the messages issued by A;
– for transform 8, B creates its own key pair and signs an entirely different

message.

Fig. 1. Signature transforms

KB
pub, m′, s′ KA

pub, m, s KA
pub, m, s′

@
@

@@I 8 6
1

�
�

���2

KB
pub, m′, s � 7

(KA
pub, m, s)∗ -3

KA
pub, m′, s

�
�

��	

6

?

5
@

@
@@R

4

KB
pub, m, s′ KB

pub, m, s KA
pub, m′, s′

Transforms 3 and 4 are computationaly infeasible for any good signature
scheme: B must not be able to produce a new message and a signature which
will be accepted by the verification algorithm relatively to A’s public key. When
either 3 or 4 is possible, it is called a forgery attack [6].

Transform 2 is subject to debate. For any given message m, that several
distinct signatures are accepted relatively to the same public key is normal if
the signature algorithm is randomized, which is a desirable property. If B can
apply transform 2 without knowing the private key KA

priv, the signature scheme
is said to be malleable[7]. Whether malleability is acceptable for a signature
scheme depends on the context. This paper does not deal any further with that
question.

Transforms 5 and 7 are the purpose of this article. We define a new property
which we call exclusive ownership. A signature scheme will be said to have con-
servative or destructive exclusive ownership if it is computationaly infeasible for
B to apply, respectively, transform 5 or 7.

We will now define exclusive ownership formally.

1.2 Formal Definitions

Let us consider a signature scheme; it consists of the following three algorithms
(as described in [6]):

– a key generation algorithm G which, on input 1k (where k is the “security
parameter”), outputs a pair (Kpub,Kpriv) (a public key and a corresponding
private key);

– a signature algorithm Σ which, using the private key Kpriv, produces for a
message m (in the space of messages M) a signature s = Σ(Kpriv,m) (in
the space of signatures S);

– a verification algorithm V which takes as input a public key Kpub, a message
m and a signature s, and returns true if the signature is “valid”, false
otherwise.

When Kpub and Kpriv are such that, for every possible message m in M, we
have V (Kpub,m, Σ(Kpriv,m)) = true, then we say that Kpriv matches Kpub. G
must be such that it outputs only matching key pairs.

We now suppose that there exists an entity which has run the algorithm
G and thus owns a key pair (Kpub,Kpriv). That entity then proceeds with the
signing of t messages m1, m2,... mt using Kpriv, thus producing s1, s2,... st.
Another entity, the “attacker”, will try to produce a new key pair (K ′

pub,K ′
priv),

a message m′ and a signature s′, such that:

– K ′
priv matches K ′

pub;
– V (K ′

pub,m′, s′) = true;
– s′ is one of the si(1 ≤ i ≤ t); we note it sj .

Definition 1. The signature scheme is said to provide conservative exclusive
ownership (CEO) if it is computationaly infeasible for the attacker, given Kpub

and t pairs (mi, si) such that V (Kpub,mi, si) = true for 1 ≤ i ≤ t, to produce
values K ′

pub, K ′
priv and m′ such that K ′

pub 6= Kpub, K ′
priv matches K ′

pub, m′ =
mj for some value j (1 ≤ j ≤ t) and V (K ′

pub,mj , sj) = true.

Definition 2. The signature scheme is said to provide destructive exclusive
ownership (DEO) if it is computationaly infeasible for the attacker, given Kpub

and t pairs (mi, si) such that V (Kpub,mi, si) = true for 1 ≤ i ≤ t, to produce
values K ′

pub, K ′
priv, m′ and s′ such that K ′

pub 6= Kpub, K ′
priv matches K ′

pub,
s′ = sj for some value j (1 ≤ j ≤ t), m′ 6= mj and V (K ′

pub,m′, sj) = true.

Definition 3. The signature scheme is said to provide universal exclusive own-
ership (UEO) if it is computationaly infeasible for the attacker, given Kpub and
t pairs (mi, si) such that V (Kpub,mi, si) = true for 1 ≤ i ≤ t, to produce values
K ′

pub, K ′
priv, m′ and s′ such that K ′

pub 6= Kpub, K ′
priv matches K ′

pub, s′ = sj for
some value j (1 ≤ j ≤ t) and V (K ′

pub,m′, sj) = true.

Universal exclusive ownership naturally implies conservative and destructive
exclusive ownership. However, there are no other implications. See section 3 for
further details.

We call second key construction the process of defeating exclusive ownership,
that is building a quartet (K ′

pub,K ′
priv,m

′, sj) which verifies the properties de-
scribed above. Some distinctions can be made, depending on whether and when
B chooses the messages that A signs (known messages, chosen messages and
adaptative chosen messages second key construction).

1.3 Relevance to X.509 Revocation

X.509[1] is a standard for public-key infrastructures. Public keys owned by en-
tities are certified by encapsulating them into certificates, which are digitally
signed by certification authorities, whose public keys are themselves published
within other certificates. A certificate establishes a binding between an identity
and a public key. Certificate validation is the process of verifying those signa-
tures, from an a priori trusted public key (often called a “root authority” or

“trust anchor”) downto an end-entity certificate. Validation uses signatures in
the “proper” way: trust is transfered from knowledge of the public key to the
signed data.

X.509 certificates can be revoked for a number of reasons, including private
key compromise and normal rights management. Revocation is a way of ex-
ternally “cancelling” a certificate, by declaring its signature invalid. The most
common way to revoke a certificate is to publish a Certificate Revocation List
(CRL) which contains the revocation status of the certificates issued by an au-
thority. The paradigm here is that a given certificate has a unique issuer, and
a unique revocation status. Applications use this unicity to implement caching
strategies which prevent certificate validation from using too many computing
resources.

The problem is that the validator considers a CRL as valid for a given certifi-
cate if it is signed relatively to the same public key than the certificate itself. If
the signature algorithm lacks exclusive ownership, then a rogue authority could
create a fake certificate issuer, with a constructed second key which validates
the certificate. The rogue authority could then publish another CRL. From the
point of view of the validator, the certificate has two issuers, and two relevant
CRLs (both fulfill all validation procedures, including signature verification).
The validation algorithm is then unsound, because it will return a result which
depends upon which issuer is tried first by the validator. Moreover, for an appli-
cation which uses a cache for certificate revocation status, the rogue authority
can “contaminate” other certificate hierarchies, by declaring them as revoked,
even though these certificates are not part of the authority subtree. This is in
contradiction with the principle of a hierarchical PKI.

A detailed analysis of this weakness is presented in [2].

2 Usual Algorithms Lack Exclusive Ownership

The most widely used signature algorithms do not have the exclusive ownership
property, neither conservative nor destructive. For some of them, we present here
second key construction algorithms which work in the most adverse situations
(only one signature is available on a known message, and the attacker arbitrarily
chooses the message that will be validated by the signature relatively to the new
public key).

2.1 RSA

Algorithm Description
RSA is a signature algorithm1 whose principle was first described in [8]. The

core operation is a modular exponentiation:

– the public key is (n, e) where n is a (big) composite number and e is an
arbitrary value, usually small, which is relatively prime to φ(n);

1 RSA is also an asymmetric encryption algorithm, but we consider here only the
signature version.

– the private key is a number d;
– a value v (modulo n) is signed by computing s = vd mod n;
– a signature s is verified by computing w = se mod n and checking that

w = v.

The private key d must be such that the verification algorithm works; it can be
selected such that ed = 1 mod φ(n) (other private key values are possible, but
this distinction is not important in this paper).

The core algorithm signs a value modulo n; several standards have been de-
fined, which describe how an arbitrary binary message m is transformed into
a value v in a way which makes RSA a secure signature scheme (this is called
a padding scheme because it was historically done by concatenating the hashed
message with some specific data). The most widely used standard is PKCS#1[3],
which contains both a deterministic (old version, so-called “1.5”) and a random-
ized (new version, named PSS) padding schemes. The resistance of these schemes
to forgeries remains unchallenged; PSS even features strong security proofs.

Second Key Construction
Whatever the padding scheme used, as long as it does not use the value of

n but only its size (which is the case for PKCS#1 padding schemes), RSA does
not have the exclusive ownership property. We consider a public key (n, e) and
a signature s on a message m; s is a positive integer strictly lower than n. We
now consider another message m′ which the padding scheme transforms into a
value v′ modulo n. We build a new public key (n′, e′) with the following process:

1. We select distinct random numbers qi such that:
– qi is prime;
– pi = 2qi + 1 is prime;
– pi is relatively prime to v′ and s;
– there exists some value di such that v′di = s mod pi and di is relatively

prime to 2qi (this property is easily checked if qi is small enough, e.g. by
exhaustive search on di).

2. From the set of numbers pi, we choose k of them (which we number from 1
to k), such that n′ = Πk

i=1pi has the appropriate size (n′ must be greater
than s but also small enough for v′ to be a valid padding result with m′ as
message and n′ as modulus).

3. We define the values e′i to be such that e′id
′
i = 1 mod (pi − 1).

4. By applying the Chinese remainder theorem[9], we compute values d′ and e′

which are such that d′ = di mod (pi − 1) and e′ = ei mod (pi − 1) for all i
from 1 to k.

This process yields n′, d′ and e′ which are such that:

– (n′, e′) is a valid RSA public key and d′ is a valid RSA private key matching
that public key;

– v′e
′
mod n′ = s, which means that s is a valid signature of m′ relatively to

the public key (n′, e′).

This process is fast if the pi are chosen such that the computation of each
di value is fast. This is a discrete logarithm, which is easy if the pi are small
enough. The pi values are chosen as pi = 2qi + 1 where qi is prime, so that it
is probable, for each such value pi, that the value of di is relatively prime to
φ(pi) = pi− 1 = 2qi. Besides, the primality of each qi simplifies greatly the final
reconstruction of d′ and e′ with the CRT.

A very naive implementation, in the Java programming language, on a simple
and cheap PC, performs this second key construction in a few seconds for a 1024-
bit original modulus n.

Remarks

• The message m′ in the algorithm described above is chosen arbitrarily and
may be equal to the message m. Thus, this algorithm demonstrates that RSA
has neither CEO nor DEO.

• The algorithm described above produces an RSA modulus which is quite
smooth: it is a product of small factors. The factors can be made bigger at the
expense of a longer computation, to retrieve the values di. Detecting that the
modulus is smooth depends on the size of the smallest of the pi and implies a
computational effort which is roughly of the same order than the one deployed by
the attacker to compute each di. The attacker is therefore in a winning situation,
since he usually has much more computing power than what any verifier is willing
to spend before accepting a signature as valid.

• The produced public exponent e′ is not controlled by the attacker, and as
such is usually big. Most existing RSA public exponents are small (in order to
speed up signature verification) and indeed some widely deployed implementa-
tions are not even able to handle public exponents bigger than 32 bits. Whether
second key construction with a small public exponent is computationaly feasible
is not currently known.

• Our intuition is that, with a fixed public exponent, RSA provides UEO.
An intuitive argument runs thus: second key construction yields a key pair, from
which a factorization of the modulus n′ can be deduced. However, a pair (m′, s)
may accept only very few modulus values for which s will be a valid signature
(se mod n must be a valid padded value derived from m′). Hence, successful
second key construction is a factorization algorithm on one of the modulus values
n′ for which se mod n′ = v′. Easily factored integers of the size of a typical RSA
modulus are scarce; hence, generic second key construction should not succeed
in the general case.

Having a fixed public exponent means that the standard within which RSA
is used specifies one unique public exponent which all public keys use. Although
some values are popular (3, 17 and 65537), no clear consensus has yet been
established on which value should always be used. Most protocols currently
specify an RSA public key as a pair “modulus + public exponent”, sometimes
with restrictions on the public exponent size.

2.2 DSS

Algorithm Description
DSS is the American government Digital Signature Standard; it is described

in [4]. The base algorithm uses computations in a subgroup of invertible numbers
modulo p. The group parameters are:
– p, a 1024-bit prime number;
– q, a 160-bit prime number which divides p− 1;
– g, a multiplicative generator of a subgroup of order q (which means that

0 < g < p, g 6= 1 and gq = 1 mod p).

A DSS private key is an arbitrary number x such that 0 < x < q, and the
associated public key is y = gx mod p.

In order to sign a message m, a hash function (SHA-1 for basic DSS) is
applied to the message, yielding H(m) (the size of H(m) should be at least the
size of q). Then the signer chooses a random number k such that 0 < k < q and
computes the two following values:

r = (gk mod p) mod q

s = k−1(H(m) + xr) mod q

The signature is the pair (r, s).
The signature verification algorithm is thus:

w = s−1 mod q

u1 = wH(m) mod q

u2 = wr mod q

v = (gu1yu2 mod p) mod q

The signature is accepted if and only if v = r.

Second Key Construction
We now consider that we have a valid triplet with a public key, a message

and a signature, with the notations described above. We choose a new message
m′ and an arbitrary (e.g. random) number f such that 0 < f < q. We now
compute the following values:

g′ = (gu1yu2)f mod p

x′ = r−1(sf−1 −H(m′)) mod q

y′ = g′x
′
mod p

It can easily be seen that (r, s) then constitutes a valid signature for message
m′ relatively to the public key y′, with group parameters p, q and g′. x′, the
private key corresponding to y′, is known; thus, we have completed a successful
second key construction.

Remarks

• The message m′ in the algorithm described above is chosen arbitrarily and
may be equal to the message m. Thus, this algorithm demonstrates that DSS
has neither CEO nor DEO.

• The “trick” used here is to use gk (as advertised by the initial signer
through the signature) as the basis for a new group generator. DSS security
relies on the fact that discrete logarithm is hard: retrieving k from gk mod p is
not computationaly feasible. By shifting the generator, we make that discrete
logarithm easy. We still use the same group. Since q is prime, and thus relatively
prime to both k and f , a random choice of f yields just any group element with
equal probability. This makes the second key exactly as valid as the initial key:
no test on the public key or group parameters may establish which of the two
keys is the “correct” one.

• It is not possible to perform second key construction without altering the
paramaters p, q and g. If such a second key was found, the signature and the
private key could be used to retrieve the original k parameter used by the orig-
inal signer; the whole process would then solve discrete logarithm (find k from
gk mod p), which is considered intractable.

• DSS defines (in [4]) a parameter generation algorithm, which uses internal
pseudo-random number generators. Once the seed is determined, the parameter
generation algorithm is deterministic; hence, with the seed, the parameter gen-
eration algorithm can be run again and the parameters checked. This validation
algorithm defeats the second key construction described above, because it is not
possible to find a seed which will match the new group generator g′ (that such a
seed exists at all is actually most improbable). However, the publication of the
seed is optional in the usual public key formats, the validation is very expensive
(thousands of times the cost of verifying the signature, up to dozens of seconds
on a big modern PC), and the standard parameter generation is suboptimal (it
does not include some basic optimisations which may speed up the process). The
bottom line is that some parameter generation algorithms do not use the stan-
dard, verifiable algorithm, and almost none of the verifiers do actually validate
the parameters.

• The second key construction algorithm can trivially be applied to vari-
ants of DSS based on elliptic curves, or other groups. It also works with other
schemes based on discrete logarithm, such as Schnorr[10] and El-Gamal[11]. The
basic principle remains the same: shift the generator, using the published (either
directly, or indirectly as in DSS) value gk as basis for the new generator.

3 Adding Exclusive Ownership

In the following sections, we will concatenate and apply hash functions on both
messages and public keys; this assumes that a convenient unambiguous deter-
ministic binary representation of messages and public key is defined. This is in

any way true for almost all existing applications, for instance those which handle
digital certificates.

3.1 Destructive Exclusive Ownership

Destructive exclusive ownership can be added to any signature scheme in the
following way: from a scheme (G, Σ, V), define a new scheme (G′, Σ′, V ′) such
that:

– G′ = G;
– for any message m, Σ′(Kpriv,m) = Σ(Kpriv,m)||h(m) where || is the con-

catenation, and h is a cryptographically secure hash function;
– for any signature s = s1||t where t has the size of the output of h, s is

accepted by V ′ if and only if s1 is accepted by V and t = h(m).

If the hash function h is collision-free (it is computationaly infeasible to ex-
hibit a collision), that new scheme trivially provides DEO, because the signature
is “branded” with the signed message, and hence cannot be used for any other
message. Note that if the original scheme does not provide CEO, the new scheme
does not provide it either.

3.2 Conservative and Universal Exclusive Ownership

Conservative exclusive ownership can be added to any signature scheme in the
following way: from a scheme (G, Σ, V), define a new scheme (G′, Σ′, V ′) such
that:

– G′ = G;
– for any message m, Σ′(Kpriv,m) = Σ(Kpriv,m)||h(Kpub) where || is the

concatenation, and h is a cryptographically secure hash function;
– for any signature s = s1||t where t has the size of the output of h, s is

accepted by V ′ if and only if s1 is accepted by V and t = h(Kpub).

If the hash function h is collision-free, this scheme makes each signature
exclusive to the public key which was used to generate it. Thus, the signature
cannot be reused with any other public key. It so happens that this provides
UEO, which is the union of CEO and DEO.

It is possible to create a contrived example which ensures CEO but not DEO:
for instance, use DSS and define the signature to be the concatenation of a plain
DSS signature on the message, and h(m⊕(p, q, g)) where ⊕ is a bitwise exclusive
or, and p, q and g are the public key parameters (some formatting and padding
is needed in order to define this cleanly). Since second key construction on DSS
requires changing the parameters (see section 2.2), m must also be modified in
order to keep the total hash value unmodified; but such modification is easy
since a simple bitwise exclusive or is used. Hence this scheme does not provide
DEO. But it can be proven that if this modified DSS does not provide CEO,
then the attacker can also produce existential forgeries on DSS.

This example shows that CEO does not imply UEO.

3.3 UEO Without Expanding Signatures

The method described in the previous section provides UEO but increases the
signature size, which may be inappropriate for some applications. Unfortunately,
we found no easy way to define a generic construction which provides UEO
without increasing signature size. However, we do have a construction which
works if the underlying signature scheme provides an additional property, which
we explicit below.

Let us consider a secure signature scheme (G, Σ, V) which has the following
property P: for any given public key Kpub and signature value s that success-
fully pass the basic correctness tests that the verifier is willing to implement,
and for random messages m taken in a defined space H (of cardinal #H), the
probability over H that V (Kpub,m, s) = true is negligeable (no more than 2−80

for instance). For the purpose of our construction, it is not needed that this
property be true for any space H, but only for the space of output values of a
proper hash function h.

RSA has that property. The signature s and the public key (n, e) are sufficient
to compute se mod n, which is the padded message, which is mostly the hashed
message with additional features. For DSS, however, the situation is a bit more
problematic: if the verifier does not perform some validation on the public key
parameters, this property is not met (for a given signature, it is possible to devise
a flawed public key such that the signature will be considered valid for many
possible messages, for instance one message in three). The validation process
must check that:

– q is prime;
– r and s (the two parts of the DSS signature) are strictly lower than q;
– g (the group generator) is greater than 1, lower than p, and has order q;
– y (the public key itself) is greater than 1, lower than p, and has order q.

Under those conditions, DSS has the required property P. Performing these
checks will slow down signature verification by a factor of about 2.5 in a typical
implementation.

We will now build the new signature scheme (G′, Σ′, V ′) which provides UEO.
We suppose that there exist:

– a secure hash function h which takes as input arbitrary bit strings;
– an unambiguous deterministic representation of the possible output values

of h into messages m in M.

Then we define:

– G′ = G;
– Σ′(Kpriv,m) = Σ(Kpriv, h(m||Kpub)) (where || denotes concatenation);
– V ′(Kpub,m, s) = V (Kpub, h(m||Kpub), s).

We place ourself in the (non-standard) model known as the Random Or-
acle Model, proposed in [12] after a suggestion by Fiat and Shamir[13]. If we

consider h to be a random oracle, and if the original signature scheme has the
property defined above, then this new signature scheme provides UEO. This is
easily proven: the very nature of h as a random oracle means that second key
construction has to work as a guess-work, where both m′ and K ′

pub are chosen
prior to invoking the oracle, with a probability of success which is negligeable,
thanks to the property of the initial signature scheme. And since K ′

pub is distinct
from Kpub (by definition of second key construction), none of those requests to
the oracle may be performed by the initial user; thus, messages signed by the
initial user are of no help to the attacker.

In most usual signature schemes, an appropriate hash function h′ is already
used, which means that the signature scheme operates on h′(m) instead of m
directly. We can thus merge that internal hash function h′ with h. In that sense,
we can give UEO to such a signature protocol by simply adding a copy of the
public key (or a hash thereof) within the signed data. Note that, for any signature
scheme which is deemed resistant to existential forgeries, signing m||Kpub is not
sufficient to guarantee UEO, unless resistance to existential forgeries is true for
all possible keys, even the weak and potentially incorrect keys that the attacker
may use. Hence the property P which we defined above.

4 Conclusion

We presented in this article the new notion of Exclusive Ownership, which usual
signature algorithms do not provide. That notion is important to some real-world
applications, such as the X.509 revocation system through CRLs. We showed how
to defeat EO for some algorithms such as RSA and DSS; we also presented some
generic ways to modify signature schemes in order to provide UEO, although
these methods have shortcomings (either signature size increase, or restriction
to algorithms which have a specific property, and the security proofs are in the
random oracle model).

Our model describes the attack as recontructing a new key pair, which the
attacker may later use to sign other messages. A slightly weaker attack model
would be the following: the attacker builds a new public key K ′

pub, which vali-
dates a previously issued signature s′ = s on some message m′, and also a new
signature s′′ on another message m′′, distinct from m′. In this model, the attacker
needs not gain any knowledge of a private key K ′

priv matching K ′
pub. Our generic

constructions for providing exclusive ownership also defeat this weaker attack
model. It is yet an open question, whether RSA with a fixed or range-restricted
public exponent provides exclusive ownership, either in our main attack model,
or in this weaker model.

References

1. Internet X.509 Public Key Infrastructure, Certificate and Certificate Revocation List
(CRL) Profile, R. Housley, W. Polk, W. Ford and D. Solo, RFC 3280, April 2002.

2. On the Soundness of Certificate Validation in X.509 and PKIX, T. Pornin and
J. P. Stern, to appear in EuroPKI 2005.

3. Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1, J. Jonsson and B. Kaliski, RFC 3447, February 2003.

4. Digital Signature Standard, National Institute of Standards and Technology (NIST),
FIPS 186-2, 2000.

5. Key-spoofing attacks on nested signature blocks, R. Christianson and M. R. Low,
Electronics Letters, vol. 31, no. 13, 1995, pp. 1043–1044.

6. A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks,
S. Goldwasser, S. Micali and R. Rivest, SIAM Journal on Computing, vol. 17, no. 2,
1988, pp. 281–308.

7. Flaws in Applying Proof Methodologies to Signature Schemes, J. Stern,
D. Pointcheval, J. Lee and N. Smart, Lecture Notes in Computer Science, Pro-
ceedings of Crypto’02, 2002, pp. 93–110.

8. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems,
R. Rivest, A. Shamir and L. Adleman, Communications of the ACM, February
1978, pp. 120–126.

9. Fast decipherment algorithm for RSA public-key cryptosystem, J.-J. Quisquater and
C. Couvreur, Electronics Letters, vol. 18, no. 21, October 1982, pp. 905–907.

10. Efficient signature generation by smart cards, G.P. Schnorr, Journal of Cryptology,
vol. 4, 1991, pp. 161–174.

11. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms,
T. El-Gamal, Lecture Notes in Computer Science, Proceedings of Crypto’84, 1985,
pp. 10–18.

12. Random Oracles Are Practical: a Paradigm for Designing Efficient Protocols,
M. Bellare and P. Rogaway, Proceedings of the 1st CCS, ACM Press, 1993, pp. 62–
73.

13. How to Prove Yourself: Practical Solutions of Identification and Signature Prob-
lems, A. Fiat and A. Shamir, Lecture Notes in Computer Science, Proceedings of
Crypto’86, 1987, pp. 186–194.

