
Comparative Performance Review of

the SHA-3 Second-Round Candidates

Thomas Pornin, <thomas.pornin@cryptolog.com>

June 21, 2010

Abstract

We reimplemented all round-2 SHA-3 candidates, in both C and Java. Implementations were made

from scratch, not reusing the code provided with the NIST submission packages. The C code aims

at portability, not using the platform speci�c features beyond what is available in portable C. Similar

optimization techniques and e�orts were applied to each function, with an emphasis on embedded low-

power platforms; the resulting performance di�erences should then be considered as intrinsic to the

functions themselves. We benchmarked our code on a variety of platforms; we present here our measures,

and what conclusions can be inferred on what makes a hash function fast.1

1 Introduction

For the SHA-3 competition[1], NIST de�ned a �Reference Platform and Compiler�, namely a PC with an
�Intel Core 2 Duo processor�, clocked at 2.4 GHz, running the Windows operating system and using Microsoft
Visual Studio 2005 Professional Edition as compiler. The NIST notice introducing the competition states
that the selected SHA-3 is expected to achieve its security goals with �signi�cantly improved e�ciency� over
SHA-2; it also states that �the public� is encouraged to performs e�ciency analysis on �other platforms�.

In this paper we consider a speci�c class of �e�ciency� on some software platforms, namely processing
bandwidth (expressed in megabytes of hashed data per second or clock cycles per processed input byte) over
an appropriately long message: costs inherent to hash function initialization and �nalization are ignored.
In practice, this means input messages are longer than ten kilobytes or so. This is the most often quoted
performance �gure for any function which processes streamed data, hash functions being a prime example.

Quite predicibly, most submitters concentrated on performance on PC systems, for a variety of reasons:

• The NIST had plainly announced that they would run tests and an e�ciency analysis on their �reference
platform�.

• Cryptographers develop and optimize for what they can test on, and desktop systems are, by far, the
easiest to use, and cheapest, development platform nowadays.

• Modern x86-compatible processors tend to have some advanced features (SSE2 unit with 128-bit reg-
isters, hard-coded AES implementation for the most recent versions) which appear to have a high
potential for cryptographic applications.

• The PC is the visible computer. Few people are fully aware that most computing is now done on hidden,
embedded systems, which have percolated by dozens within the most mundane-looking appliances.
Embedded systems have a huge industrial signi�cance which is widely underestimated.

1This work was partially supported by the French Agence Nationale de la Recherche through the SAPHIR2 project under
Contract ANR-08-VERS-014.

1



Therefore, we feared that high performance on the reference platform could cloud away implementation
issues on other systems, resulting in a seemingly fast but actually suboptimal function selected as SHA-3.
In particular, many embedded systems lack the advanced features found on modern desktop systems. As
we will see later on, small systems also imply small L1 instruction cache memory, which has drastic conse-
quences on performance. We also feared that some candidates could be unfairly dismissed as slow, despite
their cryptographic merits, if their designers could not come up with decently optimized implementations:
optimization is a di�cult craft and a distinct skill set from what good cryptographers master.

We thus wanted to have a fair comparison between hash functions, on a variety of software platform types,
with an emphasis on the non-PC-with-x86-assembly architectures. In order to smooth out discrepancies
between implementer skills, we decided that all functions ought to be implemented with similar e�orts and
techniques by the same developer. Hopefully, resulting speed di�erences should then be representative of
the intrinsic characteristics of the hash functions themselves.

This approach complements the eBASH[2] measures: our implementations focus on more portable code
(to try to abstract away special architecture characteristics such as SIMD instructions), we benchmarked
them on embedded systems which are not covered by eBASH (mostly due to automation issues; it is hard
to run automatic benchmarks on a pocket calculator), and we added the �unique developer� rule.

Our work is the continuation of the development of sphlib[3], an open-source library of hash function
implementations, in both C and Java. sphlib was written by the same developer along the same lines, and
included many pre-SHA-3 hash functions, including MD5, SHA-1, the SHA-2 family and Whirlpool. We
thus added implementations of the fourteen SHA-3 �round 2� candidates. sphlib-2.1 is used here, and is
available for download on the following Web site:

http://www.saphir2.com/sphlib/

In the following sections, we describe our target architectures and development rules. We also de�ne what
we measure and how we measure it. We then give our measures, both numerically and as graphical charts.
Finally, we describe what these numbers tell us, with regards to what impacts hash function performance.

2 Target Architectures

2.1 Large Systems

What we call here a large system is about any visible computer. This covers personal computers and
workstations, but also big servers, laptops, netbooks and even smartphones. For our purposes, a large
system is any software platform with a 32-bit or more CPU, with a superscalar architecture (the hardware
can execute several instructions simultaneously) and a large level-1 cache for instructions (32 kB or more).

According to our tests, level-1 cache size turns out to be the most important factor for performance,
while the actual processor model and instruction set impacts only moderately the relative performance of
the functions (see sections 4.1 and 4.4). This is why big servers and smartphones end up together in this
�large system� category.

As representative of this category, we used the three following systems:

• A PC with an Intel Core 2 Quad Q6600 processor, clocked at 2.4 GHz (�Kents�eld� core). This is
similar to the NIST reference platform2. RAM size and operating system are not relevant for our tests
(everything important happens in level-1 cache anyway). The system runs in 64-bit mode (known as
�x86-64�, �AMD64�, �x64�, �Intel 64�, �EM64T� and a few other names). The C compiler is GCC[4],
version 4.4.3.

• The very same PC, but this time used in 32-bit mode. Registers have size 32 bits instead of 64, and
there are fewer of them. The C compiler is still GCC-4.4.3.

2Actually, the NIST reference platform is described a bit vaguely, since �Core 2 Duo� covers a wide range of processors from
Intel, with distinct timing characteristics.

2



• An older PowerPC 750 (aka �G3�), clocked at 300 MHz. The processor runs in big-endian mode. The
C compiler is GCC 4.1.3.

Those three platforms shall be representative of large systems because our test code is a portable C
implementation, which does not use the speci�c features of the Intel architecture (MMX, SSE2...). Thus,
they should behave similarly to other, large architectures such as the XScale and Cortex ARM-compatible
processors which are often found in smartphones.

2.2 Embedded Systems

We consider here systems with a �small� 32-bit processor. The CPU still o�ers 32-bit registers, but with a
reduced instruction set and no superscalar ability. The level-1 cache is much smaller, typically 8 to 16 kB.
The clock rate is also much lower, counted in hundreds or even dozens of megahertz, not gigahertz. Of
particular interest to us are:

• WiFi access points and routers. These are small, cheap appliances which must nevertheless route
high-bandwidth data all day long. Routers are ideally located to run VPN software.

• Portable media players (MP3, small videos...). Cryptography, in particular signatures, is used to
enforce digital rights. Such systems must be small and light, which implies drastic constraints on
available CPU power (the battery is small, so the CPU is underclocked).

• Mobile phones (not the bigger so-called smartphones, which are �large systems� as far as hash function
performance is concerned). Most can be used as media players, and there is a big market for data
and applications running on those platforms. There again, DRM requires e�cient cryptography. Also,
mobile phones are inherently networked, and this implies cryptography as well (e.g. SSL connections).

• Payment terminals. These are the portable terminals which handle card-based transactions in many
countries. Internally, those systems are similar to glori�ed smartcards, with tamper-resistant CPU
and RAM. The physical and electromagnetic armor prevents these systems from using the big desktop
and server processors, notably because of cooling issues. Processors are clocked at no more than
30 MHz or so. Yet those systems are in front line in valuable security systems and must rely on robust
cryptography. Hardware Security Modules (HSM) are similar in that respect: despite their high price,
their tamper-resistance implies drastically low CPU performance, with simple cores.

In order to represent this category, we used the two following architectures:

• A Linksys WRT54GS router, refurbished with the OpenWrt operating system[5] (a Linux clone for
embedded systems). The core CPU is a Broadcom BCM3302, a MIPS-compatible 32-bit processor
clocked at 200 MHz. The level-1 cache size is 8 kB for code, and another 8 kB for instructions. The C
compiler is GCC, version 4.2.4.

• A Hewlett-Packard HP-50g scienti�c calculator. This system uses an ARM920T core (ARMv4 archi-
tecture), clocked at 12 MHz, but which can be programmatically boosted to 75 MHz (which we did
for our tests). This system can be programmed in C (with a much reduced, non-standard C library),
using HPGCC[6], a derivative from GCC 4.1.1.

ARM and MIPS architectures together cover the quasi-totality of 32-bit embedded systems nowadays.
Our two systems should then be representative of this category of platforms.

2.3 Virtual Machines

A newer trend in computing is the use of virtual machines. Instead of compiling code for an existing, physical
family of processors, a virtual CPU is de�ned, with its own instruction set (usually called bytecode). The
compiled program is executed through a Virtual Machine. The VM interprets the bytecode, and uses JIT

3



(�Just In Time�) compilation techniques to dynamically convert the bytecode of the most used code parts
into native instructions for the host CPU.

Virtual Machines are not a new concept, but widespread industrial application really began with the
Java programming language, in the mid-90's. VM have a number of worthwhile characteristics:

• The virtual CPU has the same characteristics �everywhere�, such as the size of integer types; represen-
tation details such as endianness are abstracted away. This provides a great deal of portability.

• Since there is a single bytecode format, software distribution is greatly eased.

• Bytecode allows a priori veri�cation of the code with regards to data types. The VM can enforce
boundary checks upon array accesses. Program safety is widely enhanced, to the point that potentially
hostile code can be run in a sandbox, which supports the Applet model.

• The VM model (theoretically) allows for some performance improvements: the JIT compiler can op-
timize code for the speci�c CPU on which it happens to run, possibly using dynamically collected
pro�ling information (if code is �rst interpreted, the JIT compiler running only for the most used
parts), and the type safety allows for the more e�cient types of garbage collection algorithms. In
practice, these improvements compensate some of the overhead implied by the interpreter and JIT
compilation process.

VM are extremely popular, and VM-based languages are said to be more used in servers than classical
compiled languages. VM provide an API to interact with �native code� (e.g. compiled C code), but native
code nulli�es the advantages of VM which we described above. It thus makes sense to study the performance
of hash functions when implemented in bytecode.

We use the following two architectures:

• Our PC (Intel Core 2 Q6600, 2.4 GHz, 64-bit mode), running the Java VM edited by Sun Microsystems
(now Oracle), version 1.6.0_20[7].

• The same PC, in 32-bit mode, with the 32-bit version of the Java VM from Sun.

The Java VM is the most widely used VM. Its more recent competitor (the .NET VM from Microsoft,
coupled with the C# programming language) should provide similar runtime characteristics. As will be
explained in section 4, the VM and JIT compiler have their own speci�c overhead, which impacts hash
function performance in various ways, which depend on the hash function itself.

2.4 Compilation Options

All the C compilers for our test architectures are variants of GCC. Optimization in GCC is triggered with the
-On command line �ags, where n is a digit from 1 to 9. Theoretically, a higher n implies better performance
(and longer compilation time), but in practice things are not that clear. Code optimization relies on a
number of heuristics, which are not necessarily valid for all codes, and especially not for hash function
implementations which tend to rely on heavy loop unrolling and a plethora of local variables.

In practice, the -O1 compilation �ag often o�ers better performance than -O2, sometimes dramatically so
(e.g. +50% speed with SHA-1). Thus, the default compilation �ags for sphlib are set, in the build script,
to �-O1 -fomit-frame-pointer�. Nevertheless, for some hash functions, -O2 does a better job than -O1, so
we also compiled all functions with �-O2 -fomit-frame-pointer� and we kept the best of the two measured
performances. This was done individually for each function and each hash output length.

Another tunable option of sphlib is the selection of the �small footprint� implementations. These are
activated by de�ning the SPH_SMALL_FOOTPRINT macro. Small footprint implementations are optimized to �t
within the 8 kB of level-1 cache of our MIPS-based test architecture; they o�er much better performance on
that system, but worse performance on large systems. There again, for each platform, each optimization level,
each function and each hash output length, we tried the �normal� and the �small footprint� implementations,
and kept the best measure among the two.

4



An additional parameter is found on the ARM platform: the ARMv4 architecture supports two instruc-
tion sets, the �normal� set (inherited from older ARM versions) and the �thumb� mode. The thumb mode
features simpler instructions, and some of the registers are not available through thumb mode; but instruc-
tions are also twice smaller, which makes the code more compact and helps it �t within the level-1 cache.
Normal and thumb code can be freely mixed within a given application (the CPU can switch conventions in
a single clock cycle, when calling a function). Hence, we doubled our tests, once in normal mode and once
in thumb mode.

For the Java architectures, the VM does not o�er many tunable options. We ran our tests with the
-server command-line option, which should encourage the JIT compiler to think harder. Our test procedure
includes a bit of �warm-up� so that measures are taken after the JIT compiler has acted.

2.5 Out of Scope Architectures

Our work does not cover the following kinds of architectures, which are nonetheless important with regards
to hash function performance:

• 8-bit and 16-bit architectures. These are found mostly in smartcards. They are usually programmed
in assembly, not C, and their characteristics vary quite widely. A comparison e�ort such as the one
we describe here would require the use of many test platforms, each with its own development and
optimization e�ort.

• FPGA and ASIC. Hardware follows its own rules, in particular parallelism, and circuit size is at least
as important as resulting bandwidth. sphlib is a software library.

• GPU. The most recent graphics accelerators, normally used for rendering 3D images and animations,
actually include arrays of processors in SIMD mode (single instruction, multiple data), which can be
programmed �generically�. The market for GPU is still too new to de�ne �representative� systems.
Also, GPU programming has some speci�cities, with languages which are similar, but not identical to
C. We did not investigate GPU implementation of hash functions (yet).

Also, we have not devoted any e�ort to the production of compact implementations. We always tar-
getted the size of the level-1 cache for instructions. In practical situations (as opposed to ideal benchmark
conditions), the hash function code must share the caches with the other elements in the applicative data
processing path. Very small implementations (e.g. less than 1 kB of compiled code) are also very important
in some situations where overall code size is constrained (for instance, in a boot ROM). sphlib implemen-
tations do not cover that kind of optimization, although the cache size issues illustrate how hash function
performance is impacted by constraints on code size.

3 Measures

For each function, the hash function performance was measured on a long message. Basically, this means
that we hash a single message of length bn bytes, where b is the block size and n is the number of blocks.
The function implementation is given one block of size b per call. b is equal to 8192 (this is the �traditional�
bu�er size for I/O and it �ts within the level-1 cache for data on all our test architectures). n is dynamically
adjusted so that the processing time exceeds two seconds. Elapsed time is measured with the clock()

function on an otherwise idle machine (System.currentTimeMillis() in Java). Achieved precision is about
2% (in the tables below we give more digits, but only the �rst two or three are really signi�cant).

Before that measure, the function is �warmed-up� by computing many digests on messages of various
lengths. The point is to allow every part of the hardware and software to reach its top speed (cache memory,
jump prediction tables in the processor, JIT compilation).

This measure does not take into account the initialization and �nalization times. Although sphlib code
tries not to do anything stupid, initialization and �nalization procedures have not been optimized with as
much care as the main loop. Thus, performance of sphlib might not be really representative of hash function

5



performance on that matter. Not all functions are equivalent in that respect; but sphlib is not (yet) the
right tool to evaluate hash function performance on very short messages.

The tables below (tables 1 to 7) contain our measures, expressed in megabytes per second (one megabyte
is 106 bytes), cycles per byte, and speed relative to the average SHA-2/3 speed. That average speed is de�ned
to be the average speed of the �fteen SHA-2 and SHA-3 candidate functions with the same output size, on
the same machine. The charts (�gures 1 to 7) list the same functions, sorted by bandwidth (in megabytes
per second).

We give �gures for 256-bit and 512-bit outputs. For all tested functions except Keccak, the function with
a 224-bit output o�ers the same performance than the 256-bit variant. For all tested functions except Fugue,
Keccak and Lu�a, the 384-bit function yields the same bandwidth than the 512-bit function.

It shall be noted that whenever applicable, sphlib performance was compared with the submitted op-
timized code and the performance �gures reported in the submission packages; sphlib was always on par
with those �gures. More precisely, if the submitted code kept to �portable C� (no MMX/SSE2), then we
compiled and benchmarked it on our x86 PC, in both 32-bit and 64-bit mode, using the same compiler and
optimization �ags than for sphlib. The sphlib code always o�ered comparable performance, or better
performance in a few cases (e.g. with SHAvite-3 and a 512-bit output, sphlib is twice faster, because the
submitted optimized code has an unrolled loop which exceeds the 32 kB of level-1 instruction cache of our
Intel Q6600 � the SHAvite-3 submitters optimized for an AMD CPU which has a 64 kB level-1 cache). This
validates the e�ectiveness of the optimization strategy of sphlib.

Of course, for the �large� architectures (mostly x86) and most of the SHA-3 round 2 candidates, there
exist published, faster implementations which use the special features of the platform[2]. The �gures below
should not be taken as a claim for the fastest achievable performance on the speci�c platforms on which we
ran our tests. Rather, the reported measures:

• are a token of the quality of sphlib code, within its set constraints of portability;

• are meant to allow prediction of hash function performance on other comparable architectures;

• can be used to analyze some e�ects such as the importance of 64-bit native types for a given function
(by comparing the x86 platform in 32-bit and 64-bit modes).

6



Function 256-bit output 512-bit output
Mbytes/s cycles/byte normalized Mbytes/s cycles/byte normalized

SHA-2 144.71 16.58 1.093 187.72 12.78 1.306
BLAKE 230.42 10.42 1.740 341.96 7.02 2.379
BMW 238.61 10.06 1.802 462.82 5.19 3.219
CubeHash 60.19 39.87 0.455 60.19 39.87 0.419
ECHO 62.14 38.62 0.469 33.55 71.54 0.233
Fugue 79.18 30.31 0.598 41.30 58.11 0.287
Grøstl 94.85 25.30 0.716 48.11 49.89 0.335
Hamsi 41.55 57.76 0.314 14.65 163.82 0.102
JH 60.19 39.87 0.455 59.65 40.23 0.415
Keccak 120.37 19.94 0.909 64.22 37.37 0.447
Lu�a 96.56 24.86 0.729 55.01 43.63 0.383
SHAvite-3 105.27 22.80 0.795 61.57 38.98 0.428
Shabal 318.62 7.53 2.407 319.57 7.51 2.223
SIMD 46.93 51.14 0.354 40.92 58.65 0.285
Skein 286.33 8.38 2.163 365.22 6.57 2.540

Table 1: Performance of sphlib on x86-64 (Intel Q6600, 64-bit, 2.4 GHz).

Sheet1

Page 1

Hamsi

SIMD

CubeHash

JH

ECHO

Fugue

Grøstl

Luffa

SHAvite-3

Keccak

SHA-2

BLAKE

BMW

Skein

Shabal

0 50 100 150 200 250 300 350

Sheet1

Page 1

Hamsi

ECHO

SIMD

Fugue

Grøstl

Luffa

JH

CubeHash

SHAvite-3

Keccak

SHA-2

Shabal

BLAKE

Skein

BMW

0 50 100 150 200 250 300 350 400 450 500

256-bit output 512-bit output

Figure 1: Bandwidth of sphlib on x86-64 (Intel Q6600, 64-bit, 2.4 GHz) (megabytes per second).

7



Function 256-bit output 512-bit output
Mbytes/s cycles/byte normalized Mbytes/s cycles/byte normalized

SHA-2 133.55 17.97 1.521 47.43 50.60 0.821
BLAKE 199.58 12.03 2.273 44.30 54.18 0.767
BMW 208.09 11.53 2.370 154.27 15.56 2.672
CubeHash 37.49 64.02 0.427 37.39 64.19 0.648
ECHO 50.27 47.74 0.572 27.06 88.69 0.469
Fugue 55.69 43.10 0.634 36.97 64.92 0.640
Grøstl 29.31 81.88 0.334 21.17 113.37 0.367
Hamsi 33.22 72.25 0.378 12.86 186.63 0.223
JH 19.85 120.91 0.226 19.97 120.18 0.346
Keccak 41.05 58.47 0.467 22.60 106.19 0.391
Lu�a 84.41 28.43 0.961 47.59 50.43 0.824
SHAvite-3 71.97 33.35 0.820 48.28 49.71 0.836
Shabal 258.11 9.30 2.939 258.11 9.30 4.470
SIMD 30.64 78.33 0.349 26.21 91.57 0.454
Skein 63.91 37.55 0.728 61.85 38.80 1.071

Table 2: Performance of sphlib on i386 (Intel Q6600, 32-bit, 2.4 GHz).

Sheet1

Page 1

JH

Grøstl

SIMD

Hamsi

CubeHash

Keccak

ECHO

Fugue

Skein

SHAvite-3

Luffa

SHA-2

BLAKE

BMW

Shabal

0 50 100 150 200 250 300

Sheet1

Page 1

Hamsi

JH

Grøstl

Keccak

SIMD

ECHO

Fugue

CubeHash

BLAKE

SHA-2

Luffa

SHAvite-3

Skein

BMW

Shabal

0 50 100 150 200 250 300

256-bit output 512-bit output

Figure 2: Bandwidth of sphlib on i386 (Intel Q6600, 32-bit, 2.4 GHz) (megabytes per second).

8



Function 256-bit output 512-bit output
Mbytes/s cycles/byte normalized Mbytes/s cycles/byte normalized

SHA-2 14.04 21.37 1.619 4.58 65.50 0.880
BLAKE 21.44 13.99 2.472 4.95 60.61 0.951
BMW 17.03 17.62 1.963 8.07 37.17 1.550
CubeHash 5.81 51.64 0.670 5.81 51.64 1.116
ECHO 3.92 76.53 0.452 2.14 140.19 0.411
Fugue 6.74 44.51 0.777 3.94 76.14 0.757
Grøstl 2.10 142.86 0.242 1.45 206.90 0.279
Hamsi 3.85 77.92 0.444 1.17 256.41 0.225
JH 1.98 151.52 0.228 1.97 152.28 0.378
Keccak 2.34 128.21 0.270 1.27 236.22 0.244
Lu�a 8.47 35.42 0.977 4.15 72.29 0.797
SHAvite-3 8.18 36.67 0.943 5.02 59.76 0.964
Shabal 25.42 11.80 2.931 25.42 11.80 4.883
SIMD 3.19 94.04 0.368 2.46 121.95 0.473
Skein 5.59 53.67 0.645 5.69 52.72 1.093

Table 3: Performance of sphlib on G3 (PowerPC 750, 32-bit, 300 MHz).

Sheet1

Page 1

JH

Grøstl

Keccak

SIMD

Hamsi

ECHO

Skein

CubeHash

Fugue

SHAvite-3

Luffa

SHA-2

BMW

BLAKE

Shabal

0 5 10 15 20 25 30

Sheet1

Page 1

Hamsi

Keccak

Grøstl

JH

ECHO

SIMD

Fugue

Luffa

SHA-2

BLAKE

SHAvite-3

Skein

CubeHash

BMW

Shabal

0 5 10 15 20 25 30

256-bit output 512-bit output

Figure 3: Bandwidth of sphlib on G3 (PowerPC 750, 32-bit, 300 MHz) (megabytes per second).

9



Function 256-bit output 512-bit output
Mbytes/s cycles/byte normalized Mbytes/s cycles/byte normalized

SHA-2 2.82 70.92 1.372 1.47 136.05 1.064
BLAKE 3.04 65.79 1.480 1.61 124.22 1.165
BMW 5.31 37.66 2.584 2.60 76.92 1.881
CubeHash 1.11 180.18 0.540 1.11 180.18 0.803
ECHO 1.09 183.49 0.530 0.59 338.98 0.427
Fugue 1.83 109.29 0.891 0.95 210.53 0.687
Grøstl 0.50 400.00 0.243 0.33 606.06 0.239
Hamsi 0.87 229.89 0.423 0.25 800.00 0.181
JH 0.64 312.50 0.311 0.64 312.50 0.463
Keccak 0.79 253.16 0.384 0.44 454.55 0.318
Lu�a 1.78 112.36 0.866 1.03 194.17 0.745
SHAvite-3 1.58 126.58 0.769 0.93 215.05 0.673
Shabal 6.74 29.67 3.280 6.74 29.67 4.877
SIMD 0.79 253.16 0.384 0.47 425.53 0.340
Skein 1.93 103.63 0.939 1.57 127.39 1.136

Table 4: Performance of sphlib on Broadcom BCM3302 (MIPS, 32-bit, 200 MHz).

Sheet1

Page 1

Grøstl

JH

Keccak

SIMD

Hamsi

ECHO

CubeHash

SHAvite-3

Luffa

Fugue

Skein

SHA-2

BLAKE

BMW

Shabal

0 1 2 3 4 5 6 7 8

Sheet1

Page 1

Hamsi

Grøstl

Keccak

SIMD

ECHO

JH

SHAvite-3

Fugue

Luffa

CubeHash

SHA-2

Skein

BLAKE

BMW

Shabal

0 1 2 3 4 5 6 7 8

256-bit output 512-bit output

Figure 4: Bandwidth of sphlib on Broadcom BCM3302 (MIPS, 32-bit, 200 MHz) (megabytes per second).

10



Function 256-bit output 512-bit output
Mbytes/s cycles/byte normalized Mbytes/s cycles/byte normalized

SHA-2 1.82 41.2 1.814 0.55 136.4 0.887
BLAKE 1.76 42.6 1.754 0.76 98.7 1.226
BMW 2.46 30.5 2.452 1.08 69.4 1.742
CubeHash 0.63 119.0 0.628 0.63 119.0 1.016
ECHO 0.45 166.7 0.449 0.24 312.5 0.387
Fugue 0.73 102.7 0.728 0.39 192.3 0.629
Grøstl 0.26 288.5 0.259 0.11 681.8 0.177
Hamsi 0.27 277.8 0.269 0.10 750.0 0.161
JH 0.23 326.1 0.229 0.23 326.1 0.371
Keccak 0.25 300.0 0.249 0.13 576.9 0.210
Lu�a 1.02 73.5 1.017 0.56 133.9 0.903
Shabal 3.22 23.3 3.209 3.22 23.3 5.194
SHAvite-3 0.71 105.6 0.708 0.45 166.7 0.726
SIMD 0.34 220.6 0.339 0.27 277.8 0.435
Skein 0.90 83.3 0.897 0.58 129.3 0.935

Table 5: Performance of sphlib on ARM920T (ARMv4, 32-bit, 75 MHz).

Sheet1

Page 1

JH

Keccak

Grøstl

Hamsi

SIMD

ECHO

CubeHash

SHAvite-3

Fugue

Skein

Luffa

BLAKE

SHA-2

BMW

Shabal

0 0.5 1 1.5 2 2.5 3 3.5

Sheet1

Page 1

Hamsi

Grøstl

Keccak

JH

ECHO

SIMD

Fugue

SHAvite-3

SHA-2

Luffa

Skein

CubeHash

BLAKE

BMW

Shabal

0 0.5 1 1.5 2 2.5 3 3.5

256-bit output 512-bit output

Figure 5: Bandwidth of sphlib on ARM920T (ARMv4, 32-bit, 75 MHz) (megabytes per second).

11



Function 256-bit output 512-bit output
Mbytes/s cycles/byte normalized Mbytes/s cycles/byte normalized

SHA-2 83.26 28.83 1.436 77.20 31.09 1.369
BLAKE 69.42 34.57 1.197 91.00 26.37 1.613
BMW 79.09 30.35 1.364 186.87 12.84 3.313
CubeHash 45.24 53.05 0.780 45.24 53.05 0.802
ECHO 22.35 107.38 0.385 11.89 201.85 0.211
Fugue 41.96 57.20 0.724 21.39 112.20 0.379
Grøstl 36.83 65.16 0.635 24.44 98.20 0.433
Hamsi 24.75 96.97 0.427 8.73 274.91 0.155
JH 30.69 78.20 0.529 30.69 78.20 0.544
Keccak 52.04 46.12 0.897 28.27 84.90 0.501
Lu�a 59.34 40.44 1.023 35.00 68.57 0.620
SHAvite-3 46.85 51.23 0.808 28.16 85.23 0.499
Shabal 153.35 15.65 2.645 153.35 15.65 2.718
SIMD 18.49 129.80 0.319 1.69 1420.12 0.030
Skein 106.10 22.62 1.830 102.26 23.47 1.813

Table 6: Performance of sphlib with Java (Intel x86 Q6600, 64-bit, 2.4 GHz).

Sheet1

Page 1

SIMD

ECHO

Hamsi

JH

Grøstl

Fugue

CubeHash

SHAvite-3

Keccak

Luffa

BLAKE

BMW

SHA-2

Skein

Shabal

0 20 40 60 80 100 120 140 160 180

Sheet1

Page 1

SIMD

Hamsi

ECHO

Fugue

Grøstl

SHAvite-3

Keccak

JH

Luffa

CubeHash

SHA-2

BLAKE

Skein

Shabal

BMW

0 20 40 60 80 100 120 140 160 180 200

256-bit output 512-bit output

Figure 6: Bandwidth of sphlib with Java (Intel x86 Q6600, 64-bit, 2.4 GHz) (megabytes per second).

12



Function 256-bit output 512-bit output
Mbytes/s cycles/byte normalized Mbytes/s cycles/byte normalized

SHA-2 68.34 35.12 1.590 26.63 90.12 0.845
BLAKE 62.89 38.16 1.463 44.06 54.47 1.398
BMW 74.67 32.14 1.737 66.41 36.14 2.108
CubeHash 35.33 67.93 0.822 35.33 67.93 1.121
ECHO 18.18 132.01 0.423 9.91 242.18 0.315
Fugue 35.75 67.13 0.832 18.25 131.51 0.579
Grøstl 18.89 127.05 0.439 12.41 193.39 0.394
Hamsi 20.08 119.52 0.467 7.88 304.57 0.250
JH 10.65 225.35 0.248 10.65 225.35 0.338
Keccak 15.64 153.45 0.364 8.30 289.16 0.263
Lu�a 42.77 56.11 0.995 24.89 96.42 0.790
SHAvite-3 38.67 62.06 0.900 24.50 97.96 0.778
Shabal 142.75 16.81 3.321 142.75 16.81 4.531
SIMD 15.85 151.42 0.369 1.57 1528.66 0.050
Skein 44.30 54.18 1.031 39.08 61.41 1.240

Table 7: Performance of sphlib with Java (Intel x86 Q6600, 32-bit, 2.4 GHz).

Sheet1

Page 1

JH

Keccak

SIMD

ECHO

Grøstl

Hamsi

CubeHash

Fugue

SHAvite-3

Luffa

Skein

BLAKE

SHA-2

BMW

Shabal

0 20 40 60 80 100 120 140 160

Sheet1

Page 1

SIMD

Hamsi

Keccak

ECHO

JH

Grøstl

Fugue

SHAvite-3

Luffa

SHA-2

CubeHash

Skein

BLAKE

BMW

Shabal

0 20 40 60 80 100 120 140 160

256-bit output 512-bit output

Figure 7: Bandwidth of sphlib with Java (Intel x86 Q6600, 32-bit, 2.4 GHz) (megabytes per second).

13



4 What Makes a Hash Function Fast

4.1 Cache Size

The most important parameter for hash function performance is cache size, precisely the size of the level-1
cache for instructions. The level-1 cache for data is much less important, except for the functions which use
tables in their implementation (e.g. ECHO).

Failure to �t the core algorithm loop within the level-1 cache implies severe performance degradation,
usually by a factor of 2 or 3, possibly much more (we witnessed a degradation of a factor of 22 on a Skein
implementation !). This impacts loop unrolling.

Loop unrolling is a technique which consists in duplicating the code for one function �round�; several
successive rounds are thus converted to executable opcodes, presented successively in RAM. The main point
of loop unrolling is that it nulli�es data routing cost. For instance, consider SHA-256: at each round, the
eight state words are �rotated�. If you unroll eight successive rounds, then each round may use the proper
variables, and the rotation becomes virtual (i.e. free: no more data copying between variables). Moreover,
if you unroll 64 successive rounds of SHA-256, then round constants can be hardcoded instead of being
obtained from a table, which saves one memory indirection per round.

Thus, unrolling can be viewed as a generic tool for suppressing data routing cost (at runtime), at the
expense of a larger code footprint3. We say that the implementation is fully unrolled when there is nothing
more to gain, with regards to data routing, by unrolling more. For instance, a fully unrolled SHA-256 has
64 copies of the round code.

If the fully unrolled function �ts in level-1 cache, then everything is �ne. Otherwise, the function must
be partially re-rolled; thus, some routing operations again imply some runtime cost, through data copying or
indirections. In the implemented functions, only CubeHash, Fugue, Lu�a and Shabal �t in the 8 kB level-1
cache of our MIPS-based test architecture, when fully unrolled. All other functions must be only partially
unrolled, which explains their poorer performance on that platform (with regards to what they can do on
large systems).

4.2 64-bit Types

64-bit integers are e�cient on systems which have native 64-bit registers. On 32-bit systems without such
registers, 64-bit integer types are very ine�cient. Any 64-bit value, on a 32-bit system, requires two registers;
most operations require two or more opcodes; additions need manual carry propagation between the lower
and upper words. Rotations are especially expensive, since they cannot use the rotation opcodes provided
by the CPU for 32-bit registers (at least on the architectures which have such opcodes).

This is easily seen on the charts about the functions with 512-bit output. On the 64-bit architectures
(either in C or Java), BMW-512 is the fastest hash function; Skein, BLAKE-512 and SHA-512 are also quite
fast. On 32-bit systems, these functions lose much ground. Comparatively, Shabal e�ciency remains high
on 32-bit systems, because that function uses only operations on 32-bit values.

On the x86 architecture, the lack of a 64-bit integer type is often compensated, in hash function imple-
mentations, with the use of special units which o�er 64-bit registers (MMX, SSE...) but this requires inline
assembly or non-portable compiler intrinsics; this does not work on other architectures, in particular the
Java VM.

We also note that using 64-bit types makes porting to some architectures quite di�cult. The �long long�
integer type has been added to C in the 1999 standard, but in the previous standard (C89, aka �ANSI C�),
the biggest available type is not guaranteed to exceed 32 bits. Fortunately, most embedded architectures
nowadays use development kits derived from some version of GCC, which has o�ered the �long long� type
for more than 15 years.

3Compilation time is also greatly enlarged.

14



4.3 Endianness

Endianness appears to be a non-issue. Sticking to the native endianness of the machine can yield an improve-
ment, but only a very slight one. For MD4 (which is extremely fast, more than twice faster than SHA-1),
on big-endian Sparc v9 systems, using the special assembly opcodes for little-endian access may speed up
the function by about 30%, with regards to the generic code (which must byte-swap the input words). The
relative speedup decreases correspondingly with the function performance.

In some corner cases, e.g. when implementing under strict code and RAM size constraints, using the
native endianness can help a bit, mostly because it avoids having to store decoded words in local variables;
hence it makes sense to de�ne I/O with the little-endian convention, which is now prevalent4. Most of
the SHA-3 round 2 candidates use little-endian. Nevertheless, at least BLAKE uses big-endian and still
o�ers very decent performance. Generally speaking, endianness is not an important factor for hash function
performance.

4.4 Instruction Set

For most functions, the actual instruction set is not important. In large systems, assembly opcodes are
dynamically translated to internal elementary instructions, on which the CPU applies its optimizations
(parallel execution, reordering, speculative execution...). The dialect, as seen by the assembly programmer
and the C compiler, impacts performance only insofar as it changes the code size, hence the ease with which
the code �ts in level-1 cache.

However, we can see, in CubeHash, a case of register starvation. On our x86 CPU, CubeHash runs at
about 60 MB/s in 64-bit mode, but only 37 MB/s in 32-bit mode. This is surprising, since CubeHash uses
only 32-bit operations. To understand what happens here, one can use the following view:

• The hash function state consists in a number of values; for CubeHash, these are 32 32-bit words. Since
the processor has less registers than that, the compiler will have to emit extra opcodes to swap values
between registers and local variables in RAM.

• On a superscalar processor, several instructions can be executed concurrently. But parallelism is
constrained by dependencies between successive operations: some operations take as operand the
result of previous operations, and thus must occur after those previous operations. This results in a
number of �free slots�, in which some parts of the processors are idle for one clock cycle.

The �free slots� are used by the compiler to perform the data swap operations between the registers and
the RAM. If there are not enough free slots with regards to the needed swap operations, performance is
degraded. This e�ect is most visible on x86 CPU in 32-bit mode, which has only seven available general
purpose registers. It is especially severe with CubeHash, which is amenable to local parallelism, i.e. has
very few dependencies between successive operations, thus reducing the number of free slots. This explains
the performance drop on 32-bit x86. As a side-note, the local parallelism is also what makes CubeHash fast
when using SSE2 opcodes.

Another instruction set e�ect which we observed is on the MIPS architecture, which does not have a
32-bit rotation opcode. Rotations must therefore be emulated with two shifts and a boolean combination,
i.e. three opcodes. This impacts both execution speed and code size. An a�ected function is Keccak: the
Keccak speci�cation describes an optimization method (called �interleaving�) which can be applied to 32-bit
architectures, and allows some of the rotations (expressed over 64-bit words) to be translated into 32-bit
rotations. Interleaving is a net gain on 32-bit systems which have a 32-bit rotation opcode; but on a MIPS,
the gain is very slight.

4The little-endian convention makes it easier to port non-endian-neutral code from the PC/Windows world, where such code
is common. Also, the little-endian convention makes it simpler to simulate the target system on a PC.

15



4.5 Java Speci�c Issues

It appears that the JIT compiler produces very fat code. This is due to the constraints under which the
JIT compiler operates: it must work fast, and produce code which the garbage collector can inspect, and
which is amenable to runtime patching, based on code which may be dynamically loaded afterwards. The
net e�ect is as if the level-1 instruction cache was severely reduced. In practice, one must implement partial
unrolling in a way very similar to what is done for the C implementation for our MIPS test platform. Note
that level-1 data cache is una�ected.

Another Java-speci�c overhead is about table accesses. Java implements an abstraction layer over mem-
ory; one cannot access RAM directly. Instead, tables use Java arrays, where every access is checked with
regards to the actual array size. The JIT compiler tries to merge such checks, but array accesses are nev-
ertheless more expensive than the already costly table accesses which are used in C. Functions which use
many table accesses thus incur an extra slowdown on the Java VM.

4.6 Complexity

CPU do not fear executing code with thousands of distinct opcodes. Programmers, however, do. When a
function consists of several distinct stages, each with many subtle and changing details, then the intellectual
resources that the programmer can devote to optimization get diluted. The prime example is SIMD. This
is the function which took the most time to implement, about twice more development time than any other
of the candidates. In the end, in order to comply with our stated rule of �similar optimization e�orts�, we
had to give up with making SIMD-512 fast in Java. This is why performance of SIMD-512 appears to be
abysmal on Java platforms: we simply lacked the time to solve its severe L1-cache issues.

Regular designs are much easier to implement. For instance, BLAKE was very easy5. This yields more
time to tinker with optimization. Design regularity should also be a valuable asset when trying to optimize
for code size instead of raw bandwidth.

4.7 Consistency

Most of the round 2 candidates are actually pairs of functions, one �small� function for 224-bit and 256-bit
outputs, and one �big� function for 384-bit and 512-bit outputs. Some functions (e.g. Fugue and Lu�a) are
actually three functions, the third one being used for the 384-bit output. Keccak is four functions (albeit
sharing the same core).

Such a dichotomy has some negative e�ects:

• Implementing the whole family of functions requires more resources from the programmer, reducing
correspondingly the resources allocated to actual optimization.

• Code size increases, when all the functions must be implemented together (e.g. for interoperability
reasons).

• Performance issues and security cease to be orthogonal: the decision of which function output size to
use, nominally a security-related issue, can no longer be taken independently of performance.

We note that SHA-2 already featured such a dichotomy. Among the SHA-3 candidates, three (CubeHash,
JH and Shabal) avoid that dichotomy and provide consistent performance for all output sizes.

4.8 On the Importance of Speed

It shall be noted that many of the candidates, and SHA-2 as well, o�er good enough performance on large
systems. A good hard disk, or a gigabit network interface, in ideal conditions, tops at about 100 MB/s. Any
hash function which o�ers at least that bandwidth will be su�cient for most purposes, in particular since we

5The clarity of the function speci�cation considerably helped, too.

16



are talking about hash function bandwidth using a single core, and a PC which processes 100 MB of data
per second is likely to have at least four cores. In brief, it is quite unlikely that even a not-that-fast hash
function like SHA-2 becomes a bottleneck in any practical situation involving a large system.

On the other hand, our MIPS router has 100baseT connectivity, and thus may receive data at 10 MB/s
speed. But the fastest SHA-3 candidate on that platform is Shabal (which is faster than SHA-1), and its
bandwidth is below 7 MB/s. This means that hash function performance is a very real issue on that kind
of system.

This is why we consider performance measures on embedded systems to be much more relevant than
those on large systems.

4.9 About Special SIMD Units

Our code is portable, because it does not use the speci�c SIMD units that some processors o�er (MMX, SSE2,
AltiVec...). These units may be accessed through inline assembly or compiler-speci�c builtin functions, but
they are not portable accross architectures. One could argue that on a speci�c system where hashing speed
proves to be a bottleneck, it would make sense to use the platform-speci�c features, even at the expense of
portability.

However, the platforms on which performance issues are most likely to appear are the small, embedded
systems: precisely the platforms which do not o�er SIMD units. On these small RISC processors, there is
very little to gain in making non-portable code. The RISC concept is that a reduced instruction set makes
it easier for compilers to produce e�cient code. Using portable C code, as we do in sphlib, should then be
the optimal implementation strategy.

Of course, SIMD units do not apply to the Java VM. The very essence of Java is about not using
platform-speci�c opcodes.

5 Conclusion

Our measures show that most of the round 2 candidates were designed for maximum performance on large
systems, preferably 64-bit architectures. For some of them, adequate performance is achieved only with
the help of the special x86 units, such as the SSE2 unit (with its 128-bit registers and parallel execution
features), or the AES-NI instructions which compute an AES round in two clock cycles on the newest Intel
processors (all of them being newer than the NIST reference platform). In our tests, such extra units are not
available, since we use portable code and try to obtain measures which can be interpolated to many distinct
architectures in the same category.

Some candidates achieve very good performance on 64-bit platforms through the use of 64-bit integer
operations, in particular BMW-512 (BMW-256 uses only 32-bit words). BMW-512 is the fastest function,
by far, on 64-bit architectures. Unfortunately, its performance decreases quite a lot on 32-bit systems. In
our view, BMW breaks records precisely on those architectures where breaking records matters the least.

It would be natural to suspect us of having chosen the speci�c test platforms on which Shabal would
shine; after all, we are part of the Shabal design team, and this is a competition. However, it is really the
other way round. When Shabal was designed, we had already conceived the idea that performance was most
important on embedded 32-bit systems, and we made sure that Shabal was fast on those. It seems that few
candidates followed the same path.

Development of sphlib will keep on. Other areas where performance issues should be investigated
include:

• performance on hashing very small messages (less than one �elementary block�);

• compact implementations, for constrained environments;

• script languages, in particular Javascript (which has almost nothing in common with Java).

17



References

[1] Cryptographic Algorithm Hash Competition, http://csrc.nist.gov/groups/ST/hash/sha-3/

[2] eBASH: ECRYPT Benchmarking of All Submitted Hashes, http://bench.cr.yp.to/ebash.html

[3] sphlib 1.1,
http://www.crypto-hash.fr/modules/wfdownloads/singlefile.php?cid=13&lid=10

[4] GCC, the GNU Compiler Collection, http://gcc.gnu.org/

[5] OpenWrt, http://openwrt.org/

[6] HPGCC, http://sourceforge.net/projects/hpgcc/

[7] Java SE Downloads, http://java.sun.com/javase/downloads/index.jsp

18


