
Password Hashing Delegation:
How to Get Clients to Work for You

Thomas Pornin

Passwords14 Las Vegas



Outline

1 Password Hashing and Delegation

2 Makwa

3 Parallel Hashing

4 Performance Measures

5 Conclusion

http://www.bolet.org/makwa/

http://www.bolet.org/makwa/


Password Hashing and Delegation



The Battlefield

Passwords are weak
because human users choose and remember them.

Offline dictionary attack: attacker tries passwords “at home”
and can check his guesses against password-dependent
values.

Password-based encryption: data is encrypted with a key
deterministically derived from the password.
Client authentication: a server stores elements which are
enough to decide whether a given user password is correct
or not (hashed passwords).



The Battlefield

Attacker’s weapons:
Patience: the attacker may afford to spend several days on
a hashed password; the user wants to log in within one
second.
Parallelism: the attacker has many passwords to try.
Specialized power: the attacker can use dedicated
harware and does not have a business to run.
Moore’s law: computers get faster over time; human brains
do not.

Defender’s weapons:
Salts: prevent cost-sharing (if the attacker wants to break
N hashed passwords, he must pay N times the cost).
Slow hashing: the hashing function can be made arbitrarily
slow so that each attacker’s guess is expensive – but so is
each user password verification.



Client Authentication: Classic

id, π σ
h(π, σ)

Stores (id):

Server stores for each user the salt (σ) and the hashed
password (h(π,σ)).
Server recomputes the hash from the password sent by
the user.



Client Authentication: Server Relief

σ

id

h(π, σ)

σ
h'(h(π, σ))

Stores (id):

Server stores for each user the salt (σ) and the hash of the
hashed password (h ′(h(π,σ))): hash function h ′ is fast
(e.g. SHA-256).
Client computes the slow part of the hash.



Client Authentication: Delegation

The slow hash is computed by untrusted 3rd-party
systems.



Password Hashing Delegation

Password Hashing Delegation is about enlisting extra
computers into the defender’s army.

Delegation systems cannot run offline dictionary
attacks.
Hashing cost can be delegated to rented muscle (cloud...).
Hashing cost can be delegated to other connected clients.
Parallel delegation: using several delegation systems for a
single password verification.

Delegation requires mathematics; it cannot be applied to just
any password hashing function.



Makwa



Makwa

Makwa is a candidate to the Password Hashing Competition.

Main characteristics:
based on modular arithmetics
CPU-only cost (not memory-hard)
algebraic structure enables advanced features: offline work
factor increase, fast path, escrow
can be delegated
named after the Ojibwe name for the American black bear



Makwa Core

Let n be a Blum integer:
n = pq for two prime integers p and q.
p = 3 (mod 4) and q = 3 (mod 4).
p and q have similar sizes.
n is large (at least 1280 bits, 2048 recommended).

Let QR(n) the set of quadratic residues modulo n:

QR(n) =
{
x2∣∣x ∈ Zn

}
Properties

Squaring is a permutation on QR(n).
It is (mostly) one-way if p and q are unknown.



Makwa Core

Main Idea

“Hash” the password by repeatedly squaring it modulo n.

When p and q are unknown, no shortcut is known to speed
up the computation.
Proposed for “time-lock puzzles” since 1996[1].
Knowledge of p and q can be used as a shortcut.
Algebraic structure amenable to delegation.

[1] Time-lock puzzles and timed-release Crypto, R. L. Rivest, A. Shamir and D. A. Wagner, Massachusetts
Institute of Technology, 1996.



Makwa Structure

lots of
modular

squarings
padding

pre-hashing
(optional)

post-hashing
(optional)

password salt

output

Pre-hashing allows for passwords of arbitrary length.
Post-hashing yields unbiased bytes (KDF usage).
Hashing and padding use HMAC_DRBG.



The Makwa H KDF: HMAC_DRBG

Proposed as a PRNG since ca 2004 by NIST (published as
part of SP 800-90A since 2006).
Security “proven” in 2008[1].
Uses HMAC internally (recommended underlying hash
function: SHA-256).
Used in Makwa for all hashing-like steps (pre-hashing,
padding and post-hashing).
Performance of H is not relevant to Makwa.

[1] Security Analysis of DRBG Using HMAC in NIST SP 800-90, S. Hirose, Information Security Applications
(WISA 2008), LNCS 5379, 2008.



Padding

HMAC_DRBG

salt password u

padding password u00

at least 30 bytes

length of n

password
length

deterministic
reversible
depends on salt and
password
pseudorandom bytes
are most signifiant
(big-endian convention)



Squarings

Modulus n

The modulus is a parameter to Makwa.
Modulus generation: similar to RSA private key generation.
Factorization needs not be known to anybody for proper
operation.

Work factor: w > 0
w+ 1 squarings: equivalent to raising to power 2w+1

(there is always at least one squaring)
With w = 0: equivalent to Rabin encryption.
CPU cost: proportional to w.



Features: Fast Path

If p and q are known, a “fast path” computation is feasible:
Compute modulo p and q separately.
Modulo p: raising to power 2w+1 is equivalent to raising to
power ep where:

ep = 2w+1 (mod p− 1)

Results modulo p and q are recombined with the Chinese
Remainder Theorem.
Randomized masking can be applied to thwart timing
attacks.

Total cost is similar to RSA private key operation.



Features: Fast Path

Usage scenario for fast path:
Hashed passwords are stored in a database.
Database is shared between several front-ends.
Some front-end servers can be entrusted with knowledge
of p and q (extra shielding, HSM, no PHP...).

Important Consequence

p and q are a private key: keep them safe !
If the “fast path” is not needed, p and q can be discarded after
generation of n.



Features: Escrow

If p and q are known, the password can actually be recovered:
Again, compute modulo p and modulo q.
Modulo p: revert w+ 1 squarings with exponent e ′p:

e ′p =

(
p+ 1

4

)w+1

(mod p− 1)

Two candidates are obtained modulo p, and two modulo q,
for a total of four candidates modulo n.
Recompute padding to identify the right candidate.

Total cost is similar to RSA private key operation.



Features: Fast Path and Escrow

Password escrow may be useful in the following situations:
Allowing for recovery of forgotten passwords (useful for
password-based encryption).
Support for authentication protocols which need the
cleartext password (e.g. APOP).
Regular detection of weak passwords by the sysadmin.

All these features can be achieved generically by hashing the
password and also encrypting it asymmetrically with an escrow
public key. Makwa allows merging the hashed password and
escrowed password into a single value.



Features: Offline Work Factor Increase

Work factor w should be regularly increased to keep track of
technological advances: when a new server is deployed, it
computes faster, and thus calls for a higher w.

Generic method: wait for the user to come by again; when the
password is known, rehash it on the fly with the new work factor.

With Makwa: take the stored value (work factor w) and square
it w ′ −w times to compute the new value for work factor w ′.



Features: Offline Work Factor Increase

Advantages of Makwa-powered work factor increase:
No need to deploy the verify-and-rehash logic in the
front-end servers.
Upgrade to the new work factor is completed within a
single administrative procedure.
Upgrade can be done at a convenient time (e.g. at night).
If p and q are known, the fast path is applicable (useful to
upgrade 1 million passwords in one go, and without
pushing the p and q values to the front-end servers).
If p and q are known, a work factor decrease can be done.



Feature Matrix

Availability of features depends on options:

Variant Unlimited Short Offline WF Escrow
input output increase

core Makwa no no yes yes
pre-hashing yes no yes no
post-hashing no yes no no
pre- and post- yes yes no no

Delegation is always possible.



Delegation: Parameter Generation

For i = 1 to 300:
Generate a random ri modulo n
Compute: αi = r

2
i (mod n)

Compute: βi =
(
α2w
i

)−1
(mod n)

The (αi,βi) pairs are the delegation parameters.
need not be secret
are computed only once, in advance
are specific to a given value of w
can be generated with n alone (the “fast path” helps but is
not necessary)



Delegation

To delegate computation of y = x2w+1
(mod n) from system A

to system B:
A generates 300 random bits (bi).
A computes:

z = (x2)
∏
bi=1

αi (mod n)

A sends z (and n, w) to B.
B computes and sends back z ′ to A:

z ′ = z2
w

(mod n)

A computes:
y = z ′

∏
bi=1

βi (mod n)



Delegation

Delegation Properties

The delegation system cannot learn x or y.
The delegation system cannot even recognize whether two
delegation requests are for the same value x or not.
Security relies on intractability of the multiplicative
knapsack problem.

Costs:
CPU cost on the source system: about 300 multiplications
(half of cost of RSA); it can be optimized further with tables.
CPU cost on the delegation system: w squarings.
Network costs: only one request and one answer;
messages have the size of n.



Parallel Hashing



The Need For Parallelism

Password hashing should be amenable to parallelism:
Most computing hardware (from smartphones to servers)
is multi-core.

Several cores can be used to process several distinct
requests simultaneously.
In some usage contexts, requests don’t occur
simultaneously (e.g. hard disk encryption) and using
several cores for a single password would offer a significant
gain.

When delegating, the delegation systems may be slower
than the server.

In particular in a Web context, where client code relies on
Javascript.



Parallel Password Hashing (Simple Case)

Let f be a password hashing function, with inputs:
Password: π
Salt: σ
Work factor: w

Let h be a hash function (a “random oracle”).

Parallel password hashing function pfm (spreads computation
over m computing units):

pfm(π,σ,w) =
m−1⊕
i=0

h
(
f
(
π,σ+ i,

w

m

))



Parallel Password Hashing (Simple Case)

The space of salt values must be large enough to
accommodate the increased usage without collisions (m
salt values per hashing).
The role of h is subtle but important.
The h function may already be included in the password
hashing function itself (with Makwa, the post-hashing step
can play the role of h).
If the function f has several costs (e.g. CPU and RAM)
then the consequences of parallelism can be complex.



Parallel Password Hashing (General Case)

Scenario: a server must authenticate clients; the server stores
password hashes. Computations are delegated to already
connected clients. The clients are slow (Javascript...) and
unreliable.

At least m clients must collaborate to reach the required
security level.
The server must send delegation requests to more than m
clients to cope with failing clients.
The connecting user is waiting and is not patient.



Parallel Password Hashing (General Case)

The h function outputs elements of a finite field K:
When using distinct passwords and random salts, the
values h(f(π,σ,w)) must be indistinguishable from a
random uniform selection of values in K.
We assume that there exists a bijective mapping from
integers (in the 0 to #K− 1 range) to elements of K.

Practical Case

Method also works for when the output of h is a sequence of
elements of K. So we can use bytes and do bytewise
computations in GF(28).



Parallel Password Hashing (General Case)

Interpolated Polynomial

Let (φi) (1 6 i 6 t) be a sequence of t distinct elements of K.
Let (vi) (1 6 i 6 t) be a sequence of t elements of K (not
necessarily distinct from each other).
Then there exists a unique polynomial Λ ∈ K[X] of degree at
most t− 1 such that:

Λ(φi) = vi

for all i from 1 to t.

The coefficients of Λ =
∑t−1

j=0 λjX
j can easily be

recomputed with Lagrange polynomials (see Shamir’s
Secret Sharing).



Parallel Password Hashing (General Case)

Parameters:
m: minimum number of delegated work units that must be
necessary to recompute the password hash.
t: number of delegation requests that will be issued
(t > m).
π: the input password.
σ: the salt.
w: the total work factor.



Parallel Password Hashing (General Case)

Password Registration:
For i = 1 to t, compute:

hi = h
(
f
(
π,σ+ i,

w

m

))
Compute the polynomial Λ such that, for all i = 1 to t:

Λ(i) = hi

Store Λ(0) and all Λ(k) for k = t+ 1 to 2t−m (total
storage: t−m+ 1 elements of K).

Registration cost: t parallel invocations of f with work factor
w/m.



Parallel Password Hashing (General Case)

Password Verification:
Compute (delegate) for hi (1 6 i 6 t).
Using m of the answers and the stored values Λ(k) for
k = t+ 1 to 2t−m, rebuild the Λ polynomial.
Verify that the value Λ(0) matches that which was stored.
If less than m answers are obtained, then it is not feasible
to know whether the password is correct or not (even
probalistically).

Verification cost: t parallel invocations of f with work factor
w/m (at least m must succeed).



Parallel Password Hashing (General Case)

Summary:
At registration time, we derive the password into t
sub-hash values.
The t values define a polynomial of degree at most t.
We save t−m+ 1 other polynomial outputs.
At verification time, we recompute at least m sub-hash
values.
Combined with the saved t−m+ 1 values, the m values
are more than enough to rebuild the polynomial: t values
define the polynomial, the t+ 1-th is used to check proper
reconstruction.

The process can be done byte by byte; computations in GF(28)
are easy and fast.



Performance Measures



Model for Estimations

Makwa’s core is a sequence of modular squarings.
80% (at least) of a RSA private key operation consist in
modular squarings.

Therefore:
We can implement Makwa using the same library as
optimized RSA implementations (e.g. OpenSSL’s “BN”
library).
We can use RSA performance as an estimate for Makwa
performance.



Modular Squarings

Rely on native code optimized library (OpenSSL, GMP...).
Use Montgomery’s multiplication
(BN_mod_mul_montgomery()).
“Fast path”: better than straightforward squarings when the
number of squarings w exceeds 34% of the modulus
length (about 700 for a 2048-bit modulus).
Java: use BigInteger.modPow() (it is backed up by native
code in some JVM, especially Android).



Modular Squarings in Javascript

Javascript’s numbers are IEEE 754 floating-point values (53-bit
mantissa).

Store 26 bits per word.
Scale words down: 26-bit word x (0 6 x < 226) is
represented by floating point value x · 2−13.
After multiplication, extract high word from 52-bit result by
using the floor() function (faster than right-shifting).
Use the ~~z expression instead of Math.floor().



Modular Squarings in Javascript

for (var i = 0; i < size; i ++) {
// ...
for (var j = 1; j < size; j ++) {

z = u * x[j] + cm * m[j] + y[j] + r;
zh = ~~z;
y[j - 1] = z - zh;
r = zh * IBASE2;

}
// ...

}

Operand is x[] (words scaled by 2−13).
Result is accumulated in y[] (words scaled by 2−26).
Modulus is m[].
IBASE2 is equal to 2−26.



Software Performance

Measures in squarings per second on an Intel Core i7-2620M
(2.70 GHz):

Platform squarings/s ratio
C + OpenSSL 1.0.1f 571000 1.0
Java (32-bit) 20400 28.0
Java (64-bit) 94300 6.0
Javascript (Chrome 36.0) 31200 18.3
Javascript (Safari 7.0.5) 20700 27.6
Javascript (Firefox 31.0) 28000 20.4
C + FPU (IEEE 754) 42400 13.5



Makwa and GPU

A 2011 study[1] compares RSA performance between
general-purpose CPU (AMD Phenom II 1090T) and GPU
(NVIDIA).

CPU and GPU offer similar performance for RSA, both per
dollar and per Watt.

“Per dollar” is about buying the hardware.
“Per Watt” is about running the hardware.

[1] On the Performance of GPU Public-Key Cryptography, S. Neves and F. Araujo, 22nd IEEE International
Conference on Application-Specific Systems, Architectures and Processors (ASAP), 2011, pp. 133–140.



Makwa and FPGA / ASIC

Existing ASIC for RSA are used in Hardware Security Modules.
Very expensive (cost of FIPS 140-2 / EAL certifications).
Old designs (because of certifications).
Not competitive with CPU.

Some FPGA include many DSP (e.g. Xilinx XC7VX690T) which
can theoretically be used for many modular squarings, but the
hardware cost is still prohibitive (cost factor at least 3).

Makwa on FPGA / ASIC

Though Makwa is structurally ASIC-friendly, integer
multiplications is one of the most optimized tasks in CPU, and
existing FPGA and ASIC hardware are not economically up to
it.



Conclusion



Makwa and Delegation

Delegation can potentially tilt the game in favour of the
defender.
Apart from delegation, Makwa is a “decent”
password-hashing function with features (fast path, offline
work factor increase...).
Software implementations can build up on existing big
integer and RSA libraries.
Surprisingly, existing GPU and FPGA don’t seem too good
for fast Makwa implementations.



Work Still Needed

Formal security proofs (knapsack problem, equivalent to
factorization...).
FPGA and ASIC implementations.
Statistics on browser performance in the field.
Full-scale experiments for delegation + parallelism.

Volunteers are welcome.


	Password Hashing and Delegation
	Makwa
	Parallel Hashing
	Performance Measures
	Conclusion

