Password Hashing Delegation: How to Get Clients to Work for You

Thomas Pornin

CGI

Passwords14 Las Vegas
Outline

1 Password Hashing and Delegation
2 Makwa
3 Parallel Hashing
4 Performance Measures
5 Conclusion

http://www.bolet.org/makwa/
Password Hashing and Delegation
The Battlefield

Passwords are weak because human users choose and remember them.

Offline dictionary attack: attacker tries passwords “at home” and can check his guesses against password-dependent values.

- *Password-based encryption*: data is encrypted with a key deterministically derived from the password.
- *Client authentication*: a server stores elements which are enough to decide whether a given user password is correct or not (hashed passwords).
The Battlefield

Attacker’s weapons:

- *Patience:* the attacker may afford to spend several days on a hashed password; the user wants to log in within one second.
- *Parallelism:* the attacker has many passwords to try.
- *Specialized power:* the attacker can use dedicated hardware and does not have a business to run.
- *Moore’s law:* computers get faster over time; human brains do not.

Defender’s weapons:

- *Salts:* prevent cost-sharing (if the attacker wants to break \(N \) hashed passwords, he must pay \(N \) times the cost).
- *Slow hashing:* the hashing function can be made arbitrarily slow so that each attacker’s guess is expensive – but so is each user password verification.
Server stores for each user the *salt* (σ) and the hashed password ($h(\pi, \sigma)$).

Server recomputes the hash from the password sent by the user.
Server stores for each user the salt (σ) and the hash of the hashed password ($h'(h(\pi, \sigma))$): hash function h' is fast (e.g. SHA-256).

Client computes the slow part of the hash.
The slow hash is computed by *untrusted* 3rd-party systems.
Password Hashing Delegation is about enlisting extra computers into the defender’s army.

- Delegation systems cannot run offline dictionary attacks.
- Hashing cost can be delegated to rented muscle (cloud...).
- Hashing cost can be delegated to other connected clients.
- Parallel delegation: using several delegation systems for a single password verification.

Delegation requires mathematics; it cannot be applied to just any password hashing function.
Makwa
Makwa is a candidate to the Password Hashing Competition.

Main characteristics:

- based on modular arithmetics
- CPU-only cost (not memory-hard)
- algebraic structure enables advanced features: offline work factor increase, fast path, escrow
- can be delegated
- named after the Ojibwe name for the American black bear
Let n be a *Blum integer*:
- $n = pq$ for two prime integers p and q.
- $p = 3 \pmod{4}$ and $q = 3 \pmod{4}$.
- p and q have similar sizes.
- n is large (at least 1280 bits, 2048 recommended).

Let $\text{QR}(n)$ the set of *quadratic residues* modulo n:

$$\text{QR}(n) = \{x^2 \mid x \in \mathbb{Z}_n\}$$

Properties

- Squaring is a permutation on $\text{QR}(n)$.
- It is (mostly) one-way if p and q are unknown.
Main Idea

“Hash” the password by repeatedly squaring it modulo n.

- When p and q are unknown, no shortcut is known to speed up the computation.
- Proposed for “time-lock puzzles” since 1996\[^1\].
- Knowledge of p and q can be used as a shortcut.
- Algebraic structure amenable to delegation.

\[^1\] Time-lock puzzles and timed-release Crypto, R. L. Rivest, A. Shamir and D. A. Wagner, Massachusetts Institute of Technology, 1996.
Makwa Structure

- Pre-hashing allows for passwords of arbitrary length.
- Post-hashing yields unbiased bytes (KDF usage).
- Hashing and padding use HMAC_DRBG.
Proposed as a PRNG since ca 2004 by NIST (published as part of SP 800-90A since 2006).

Security “proven” in 2008\(^1\).

Uses HMAC internally (recommended underlying hash function: SHA-256).

Used in Makwa for all hashing-like steps (pre-hashing, padding and post-hashing).

Performance of \(H \) is **not** relevant to Makwa.

Padding

- deterministic
- reversible
- depends on salt and password
- pseudorandom bytes are most significant (big-endian convention)

Diagram:

- salt
- "HMAC_DRBG"
- padding
- password
- u

- at least 30 bytes
- length of n
Modulus \(n \)

- The modulus is a parameter to Makwa.
- Modulus generation: similar to RSA private key generation.
- Factorization needs not be known to anybody for proper operation.

- Work factor: \(w \geq 0 \)
- \(w + 1 \) squarings: equivalent to raising to power \(2^{w+1} \)
 (there is always at least one squaring)
- With \(w = 0 \): equivalent to Rabin encryption.
- CPU cost: proportional to \(w \).
If \(p \) and \(q \) are known, a “fast path” computation is feasible:

- Compute modulo \(p \) and \(q \) separately.
- Modulo \(p \): raising to power \(2^{w+1} \) is equivalent to raising to power \(e_p \) where:

\[
e_p = 2^{w+1} \pmod{p-1}
\]

- Results modulo \(p \) and \(q \) are recombined with the Chinese Remainder Theorem.
- Randomized masking can be applied to thwart timing attacks.

Total cost is similar to RSA private key operation.
Usage scenario for fast path:

- Hashed passwords are stored in a database.
- Database is shared between several front-ends.
- Some front-end servers can be entrusted with knowledge of p and q (extra shielding, HSM, no PHP...).

Important Consequence

p and q are a *private key*: keep them safe!

If the “fast path” is not needed, p and q can be discarded after generation of n.
If p and q are known, the password can actually be recovered:

- Again, compute modulo p and modulo q.
- Modulo p: revert $w + 1$ squarings with exponent e'_p:

$$e'_p = \left(\frac{p + 1}{4} \right)^{w+1} \pmod{p-1}$$

- Two candidates are obtained modulo p, and two modulo q, for a total of four candidates modulo n.
- Recompute padding to identify the right candidate.

Total cost is similar to RSA private key operation.
Password escrow may be useful in the following situations:

- Allowing for recovery of forgotten passwords (useful for password-based encryption).
- Support for authentication protocols which need the cleartext password (e.g. APOP).
- Regular detection of weak passwords by the sysadmin.

All these features can be achieved generically by hashing the password and also encrypting it asymmetrically with an escrow public key. Makwa allows merging the hashed password and escrowed password into a single value.
Work factor ν should be regularly increased to keep track of technological advances: when a new server is deployed, it computes faster, and thus calls for a higher ν.

Generic method: wait for the user to come by again; when the password is known, rehash it on the fly with the new work factor.

With Makwa: take the stored value (work factor ν) and square it $\nu' - \nu$ times to compute the new value for work factor ν'.
Advantages of Makwa-powered work factor increase:

- No need to deploy the verify-and-rehash logic in the front-end servers.
- Upgrade to the new work factor is completed within a single administrative procedure.
- Upgrade can be done at a convenient time (e.g. at night).
- If p and q are known, the fast path is applicable (useful to upgrade 1 million passwords in one go, and without pushing the p and q values to the front-end servers).
- If p and q are known, a work factor *decrease* can be done.
Feature Matrix

Availability of features depends on options:

<table>
<thead>
<tr>
<th>Variant</th>
<th>Unlimited input</th>
<th>Short output</th>
<th>Offline WF increase</th>
<th>Escrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>core Makwa</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>pre-hashing</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>post-hashing</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>pre- and post-</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Delegation is **always** possible.
Delegation: Parameter Generation

For $i = 1$ to 300:

- Generate a random $r_i \mod n$
- Compute: $\alpha_i = r_i^2 \pmod{n}$
- Compute: $\beta_i = (\alpha_i^{2^w})^{-1} \pmod{n}$

The (α_i, β_i) pairs are the delegation parameters.

- need not be secret
- are computed only once, in advance
- are specific to a given value of w
- can be generated with n alone (the “fast path” helps but is not necessary)
To delegate computation of \(y = x^{2^w+1} \pmod{n} \) from system \(A \) to system \(B \):

- \(A \) generates 300 random bits \((b_i)\).
- \(A \) computes:
 \[
 z = (x^2) \prod_{b_i=1} \alpha_i \pmod{n}
 \]
- \(A \) sends \(z \) (and \(n, w \)) to \(B \).
- \(B \) computes and sends back \(z' \) to \(A \):
 \[
 z' = z^{2^w} \pmod{n}
 \]
- \(A \) computes:
 \[
 y = z' \prod_{b_i=1} \beta_i \pmod{n}
 \]
Delegation

Delegation Properties

- The delegation system cannot learn x or y.
- The delegation system cannot even recognize whether two delegation requests are for the same value x or not.
- Security relies on intractability of the multiplicative knapsack problem.

Costs:

- CPU cost on the source system: about 300 multiplications (half of cost of RSA); it can be optimized further with tables.
- CPU cost on the delegation system: w squarings.
- Network costs: only one request and one answer; messages have the size of n.
Parallel Hashing
Password hashing should be amenable to parallelism:

- Most computing hardware (from smartphones to servers) is multi-core.
 - Several cores can be used to process several distinct requests simultaneously.
 - In some usage contexts, requests don’t occur simultaneously (e.g. hard disk encryption) and using several cores for a single password would offer a significant gain.

- When delegating, the delegation systems may be slower than the server.
 - In particular in a Web context, where client code relies on Javascript.
Parallel Password Hashing (Simple Case)

Let f be a password hashing function, with inputs:

- **Password**: π
- **Salt**: σ
- **Work factor**: ν

Let h be a hash function (a “random oracle”).

Parallel password hashing function pf_m (spreads computation over m computing units):

$$pf_m(\pi, \sigma, \nu) = \bigoplus_{i=0}^{m-1} h\left(f\left(\pi, \sigma + i, \frac{\nu}{m}\right)\right)$$
Parallel Password Hashing (Simple Case)

- The space of salt values must be large enough to accommodate the increased usage without collisions (m salt values per hashing).
- The role of h is subtle but important.
- The h function may already be included in the password hashing function itself (with Makwa, the post-hashing step can play the role of h).
- If the function f has several costs (e.g. CPU and RAM) then the consequences of parallelism can be complex.
Scenario: a server must authenticate clients; the server stores password hashes. Computations are delegated to already connected clients. The clients are slow (Javascript...) and unreliable.

- At least \(m \) clients must collaborate to reach the required security level.
- The server must send delegation requests to more than \(m \) clients to cope with failing clients.
- The connecting user is waiting and is not patient.
The h function outputs elements of a finite field K:

- When using distinct passwords and random salts, the values $h(f(\pi, \sigma, w))$ must be indistinguishable from a random *uniform* selection of values in K.
- We assume that there exists a bijective mapping from integers (in the 0 to $\#K - 1$ range) to elements of K.

Practical Case

Method also works for when the output of h is a *sequence* of elements of K. So we can use *bytes* and do bytewise computations in $GF(2^8)$.

Let \((\phi_i) (1 \leq i \leq t)\) be a sequence of \(t\) distinct elements of \(K\). Let \((v_i) (1 \leq i \leq t)\) be a sequence of \(t\) elements of \(K\) (not necessarily distinct from each other).

Then there exists a unique polynomial \(\Lambda \in K[X]\) of degree at most \(t - 1\) such that:

\[
\Lambda(\phi_i) = v_i
\]

for all \(i\) from 1 to \(t\).

- The coefficients of \(\Lambda = \sum_{j=0}^{t-1} \lambda_j X^j\) can easily be recomputed with Lagrange polynomials (see Shamir’s Secret Sharing).
Parallel Password Hashing (General Case)

Parameters:

- m: minimum number of delegated work units that must be necessary to recompute the password hash.
- t: number of delegation requests that will be issued ($t \geq m$).
- π: the input password.
- σ: the salt.
- w: the total work factor.
Password Registration:
- For $i = 1$ to t, compute:

$$h_i = h \left(f \left(\pi, \sigma + i, \frac{w}{m} \right) \right)$$

- Compute the polynomial Λ such that, for all $i = 1$ to t:

$$\Lambda(i) = h_i$$

- Store $\Lambda(0)$ and all $\Lambda(k)$ for $k = t + 1$ to $2t - m$ (total storage: $t - m + 1$ elements of K).

Registration cost: t parallel invocations of f with work factor w/m.
Parallel Password Hashing (General Case)

Password Verification:

- Compute (delegate) for \(h_i \) (1 \(\leq \) i \(\leq \) t).
- Using \(m \) of the answers \(\text{and} \) the stored values \(\Lambda(k) \) for \(k = t + 1 \) to \(2t - m \), rebuild the \(\Lambda \) polynomial.
- Verify that the value \(\Lambda(0) \) matches that which was stored.
- If less than \(m \) answers are obtained, then it is not feasible to know whether the password is correct or not (even probabilistically).

Verification cost: \(t \) parallel invocations of \(f \) with work factor \(\frac{w}{m} \) (at least \(m \) must succeed).
Parallel Password Hashing (General Case)

Summary:

- At registration time, we derive the password into \(t \) sub-hash values.
- The \(t \) values define a polynomial of degree at most \(t \).
- We save \(t - m + 1 \) other polynomial outputs.
- At verification time, we recompute at least \(m \) sub-hash values.
- Combined with the saved \(t - m + 1 \) values, the \(m \) values are more than enough to rebuild the polynomial: \(t \) values define the polynomial, the \(t + 1 \)-th is used to check proper reconstruction.

The process can be done byte by byte; computations in \(\text{GF}(2^8) \) are easy and fast.
Performance Measures
Makwa’s core is a sequence of modular squarings.
80% (at least) of a RSA private key operation consist in modular squarings.

Therefore:

- We can implement Makwa using the same library as optimized RSA implementations (e.g. OpenSSL’s “BN” library).
- We can use RSA performance as an estimate for Makwa performance.
Rely on native code optimized library (OpenSSL, GMP...).

Use Montgomery’s multiplication (BN_mod_mul_montgomery()).

“Fast path”: better than straightforward squarings when the number of squarings \(w \) exceeds 34% of the modulus length (about 700 for a 2048-bit modulus).

Java: use BigInteger.modPow() (it is backed up by native code in some JVM, especially Android).
Javascript’s numbers are IEEE 754 floating-point values (53-bit mantissa).

- Store 26 bits per word.
- Scale words down: 26-bit word x ($0 \leq x < 2^{26}$) is represented by floating point value $x \cdot 2^{-13}$.
- After multiplication, extract high word from 52-bit result by using the `floor()` function (faster than right-shifting).
- Use the `~~z` expression instead of `Math.floor()`.
for (var i = 0; i < size; i ++) {
 // ...
 for (var j = 1; j < size; j ++) {
 z = u * x[j] + cm * m[j] + y[j] + r;
 zh = ~~z;
 y[j - 1] = z - zh;
 r = zh * IBASE2;
 }
 // ...
}

- Operand is `x[]` (words scaled by 2^{-13}).
- Result is accumulated in `y[]` (words scaled by 2^{-26}).
- Modulus is `m[]`.
- `IBASE2` is equal to 2^{-26}.
Measures in squarings per second on an Intel Core i7-2620M (2.70 GHz):

<table>
<thead>
<tr>
<th>Platform</th>
<th>squarings/s</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>C + OpenSSL 1.0.1f</td>
<td>571000</td>
<td>1.0</td>
</tr>
<tr>
<td>Java (32-bit)</td>
<td>20400</td>
<td>28.0</td>
</tr>
<tr>
<td>Java (64-bit)</td>
<td>94300</td>
<td>6.0</td>
</tr>
<tr>
<td>Javascript (Chrome 36.0)</td>
<td>31200</td>
<td>18.3</td>
</tr>
<tr>
<td>Javascript (Safari 7.0.5)</td>
<td>20700</td>
<td>27.6</td>
</tr>
<tr>
<td>Javascript (Firefox 31.0)</td>
<td>28000</td>
<td>20.4</td>
</tr>
<tr>
<td>C + FPU (IEEE 754)</td>
<td>42400</td>
<td>13.5</td>
</tr>
</tbody>
</table>
Makwa and GPU

A 2011 study[^1] compares RSA performance between general-purpose CPU (AMD Phenom II 1090T) and GPU (NVIDIA).

CPU and GPU offer similar performance for RSA, both per dollar and per Watt.

- “Per dollar” is about buying the hardware.
- “Per Watt” is about running the hardware.

Existing ASIC for RSA are used in *Hardware Security Modules*.
- Very expensive (cost of FIPS 140-2 / EAL certifications).
- Old designs (because of certifications).
- Not competitive with CPU.

Some FPGA include many DSP (e.g. Xilinx XC7VX690T) which can *theoretically* be used for many modular squarings, but the hardware cost is still prohibitive (cost factor at least 3).

Makwa on FPGA / ASIC

Though Makwa is structurally ASIC-friendly, integer multiplications is one of the most optimized tasks in CPU, and existing FPGA and ASIC hardware are not *economically* up to it.
Conclusion
Makwa and Delegation

- Delegation can *potentially* tilt the game in favour of the defender.
- Apart from delegation, Makwa is a “decent” password-hashing function with features (fast path, offline work factor increase...).
- Software implementations can build up on existing big integer and RSA libraries.
- Surprisingly, existing GPU and FPGA don’t seem too good for fast Makwa implementations.
Work Still Needed

- Formal security proofs (knapsack problem, equivalent to factorization...).
- FPGA and ASIC implementations.
- Statistics on browser performance in the field.
- Full-scale experiments for delegation + parallelism.

Volunteers are welcome.